Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 70783 by naka3546 last updated on 08/Oct/19

(5/(4∙9)) + 2((9/(16∙25))) + 3(((13)/(36∙49))) + 4(((17)/(64∙81))) + 5(((21)/(100∙121))) + … =  ?

549+2(91625)+3(133649)+4(176481)+5(21100121)+=?

Commented by tw000001 last updated on 08/Oct/19

Well,this one is unconverge series because  difference and ratio are different.  But the answer should be approximately  on (1/5) with calculator.

Well,thisoneisunconvergeseriesbecausedifferenceandratioaredifferent.Buttheanswershouldbeapproximatelyon15withcalculator.

Commented by tw000001 last updated on 08/Oct/19

It can transform to Σ_(n=1) ^∞ ((4n^2 +n)/(16n^4 +16n^3 +4n^2 )).

Itcantransformton=14n2+n16n4+16n3+4n2.

Commented by naka3546 last updated on 08/Oct/19

any  answer  that′s  real  number  but  not  in  decimal  number  form?  may  be  irrational  number  form ?

anyanswerthatsrealnumberbutnotindecimalnumberform?maybeirrationalnumberform?

Commented by prakash jain last updated on 08/Oct/19

((4n^2 +n)/(4n^2 (2n+1)^2 ))=(1/(2(2n+1)^2 ))−(1/(2(2n+1)))+(1/(4n))  (1/2)Σ_(n=1) ^∞ (1/((2n+1)^2 ))=(1/2)((1/3^2 )+(1/5^2 )+..)=(1/2)((π^2 /8)−1)  (1/2)Σ_(n=1) ^∞ ((1/(2n))−(1/(2n+1)))=  =(1/2)((1/2)−(1/3)+(1/4)+..)  =(1/2)(1−ln2)  sum=(π^2 /(16))−((ln 2)/2)

4n2+n4n2(2n+1)2=12(2n+1)212(2n+1)+14n12n=11(2n+1)2=12(132+152+..)=12(π281)12n=1(12n12n+1)==12(1213+14+..)=12(1ln2)sum=π216ln22

Answered by mind is power last updated on 08/Oct/19

=Σ_(n≥1) ((n(4n+1))/((2n)^2 (2n+1)^2 ))  f(x)=((x(4x+1))/(4x^2 (2x+1)^2 ))=(b/((2x+1)^2 ))+(c/x)+(d/(2x+1))  b=(1/2),  2c+d=0  (1/(18))+c+(d/3)=(5/(36))  ⇒d+3c=(1/4)  c=(1/4),d=((−1)/2)  ((x(4x+1))/(4x^2 (2x+1)^2 ))=(1/(2(2x+1)^2 ))+(1/(4x))−(1/(2(2x+1)))  Σ_(n≥1) f(n)=Σ(1/(2(2n+1)^2 ))+Σ(1/(4n))−(1/(4n+2))  =(1/2)Σ((1/((2n+1)^2 ))+(1/((2n)^2 ))−(1/((2n)^2 )))+(1/2)Σ(1/(2n))−(1/(2n+1))  =(1/2)Σ(1/n^2 )−(1/8)Σ(1/n^2 )+(1/2)Σ(1/(2n(2n+1)))  =(3/8)ζ(2)+(1/2)Σ(x^(2n+1) /(2n(2n+1)))∣x=1  f(x)=(3/8)ζ(2)+(1/2)Σ(x^(2n+1) /(2n(2n+1)))  f′(x)=(1/2)Σ(x^(2n) /(2n))=(1/4)Σ_(n≥1) (((x^2 )^n )/n)=−(1/4)ln(1−x^2 )  f(x)=−(1/4)∫ln(1−x^2 )dx  =−(1/4)xln(1−x^2 )+(1/4)∫((−2x^2 )/(1−x^2 ))dx  =−((xln(1−x^2 ))/4)−(1/2)∫−1+(1/(1−x^2 ))dx  =((−xln(1−x^2 ))/4)+(x/2)−(1/2)∫(dx/((1−x)(1+x)))  =((−xln(1−x^2 ))/4)+(x/2)−(1/4)∫(1/(1+x))dx−(1/4)∫(1/(1−x))dx  =((−xln(1−x^2 ))/4)+(x/2)+(1/4)ln(((1−x)/(1+x)))+c  f(0)=(3/8)ζ(2)  ⇒  f(x)=((−xln(1−x)−xln(1+x)+2x+ln(1−x)−ln(1+x))/4)+((3ζ(2))/8)  =(((1−x)ln(1−x)−(1+x)ln(1+x)+2x)/4)+((3ζ(2))/8)  limx→1f(x)=((2−2ln(2))/4)+((3ζ(2))/8)=Σ_(n≥1) f(n)  ⇒  Σ_(n≥1) ((n(4n+1))/((2n)^2 (2n+1)^2 ))=((2−2ln(2))/4)+(3/8).(π^2 /6)

=n1n(4n+1)(2n)2(2n+1)2f(x)=x(4x+1)4x2(2x+1)2=b(2x+1)2+cx+d2x+1b=12,2c+d=0118+c+d3=536d+3c=14c=14,d=12x(4x+1)4x2(2x+1)2=12(2x+1)2+14x12(2x+1)n1f(n)=Σ12(2n+1)2+Σ14n14n+2=12Σ(1(2n+1)2+1(2n)21(2n)2)+12Σ12n12n+1=12Σ1n218Σ1n2+12Σ12n(2n+1)=38ζ(2)+12Σx2n+12n(2n+1)x=1f(x)=38ζ(2)+12Σx2n+12n(2n+1)f(x)=12Σx2n2n=14n1(x2)nn=14ln(1x2)f(x)=14ln(1x2)dx=14xln(1x2)+142x21x2dx=xln(1x2)4121+11x2dx=xln(1x2)4+x212dx(1x)(1+x)=xln(1x2)4+x21411+xdx1411xdx=xln(1x2)4+x2+14ln(1x1+x)+cf(0)=38ζ(2)f(x)=xln(1x)xln(1+x)+2x+ln(1x)ln(1+x)4+3ζ(2)8=(1x)ln(1x)(1+x)ln(1+x)+2x4+3ζ(2)8limx1f(x)=22ln(2)4+3ζ(2)8=n1f(n)n1n(4n+1)(2n)2(2n+1)2=22ln(2)4+38.π26

Terms of Service

Privacy Policy

Contact: info@tinkutara.com