Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 70872 by Abdo msup. last updated on 09/Oct/19

calculate ∫∫_([1,3]^2 )    e^(−x−y)  ln(2x+y)dxdy

$${calculate}\:\int\int_{\left[\mathrm{1},\mathrm{3}\right]^{\mathrm{2}} } \:\:\:{e}^{−{x}−{y}} \:{ln}\left(\mathrm{2}{x}+{y}\right){dxdy} \\ $$

Commented by Abdo msup. last updated on 11/Oct/19

let I=∫∫_([1,3]^2 )   e^(−(x+y)) ln(2x+y)dxdy let   consider the diffeomorphism  (u,v)→(x,y)=(ϕ_1 (u,v),ϕ_2 (u,v)) /x+y=u and  2x+y=v ⇒x=−u+v  and y=2u−v ⇒  ϕ_(1(u,v)) =−u+v and ϕ_2 (u,v)=2u−v  M_j (ϕ)= ((((∂ϕ_1 /∂u)             (∂ϕ_1 /∂v))),(((∂ϕ_2 /∂u)                    (∂ϕ_2 /∂v))) )  =  (((−1            1)),((2                −1)) )    and detM_j =−1 ⇒  we have 1≤x≤3 and 1≤y≤3 ⇒2≤x+y≤6 ⇒  2≤u≤6  2≤2x≤6 ⇒3≤2x+y≤9 ⇒3≤v≤9 ⇒  I=∫∫_(2≤u≤6  and 3≤v≤9)     e^(−u) lnv du dv  =∫_2 ^6  e^(−u) du .∫_3 ^9 lnv dv  =[−e^(−u) ]_2 ^6 .[vlnv−v]_3 ^9   =( e^(−2) −e^(−6) )(9ln(9)−9−3ln(3)+3)  =(e^(−2) −e^(−6) )(15ln(3)−6)

$${let}\:{I}=\int\int_{\left[\mathrm{1},\mathrm{3}\right]^{\mathrm{2}} } \:\:{e}^{−\left({x}+{y}\right)} {ln}\left(\mathrm{2}{x}+{y}\right){dxdy}\:{let}\: \\ $$$${consider}\:{the}\:{diffeomorphism} \\ $$$$\left({u},{v}\right)\rightarrow\left({x},{y}\right)=\left(\varphi_{\mathrm{1}} \left({u},{v}\right),\varphi_{\mathrm{2}} \left({u},{v}\right)\right)\:/{x}+{y}={u}\:{and} \\ $$$$\mathrm{2}{x}+{y}={v}\:\Rightarrow{x}=−{u}+{v}\:\:{and}\:{y}=\mathrm{2}{u}−{v}\:\Rightarrow \\ $$$$\varphi_{\mathrm{1}\left({u},{v}\right)} =−{u}+{v}\:{and}\:\varphi_{\mathrm{2}} \left({u},{v}\right)=\mathrm{2}{u}−{v} \\ $$$${M}_{{j}} \left(\varphi\right)=\begin{pmatrix}{\frac{\partial\varphi_{\mathrm{1}} }{\partial{u}}\:\:\:\:\:\:\:\:\:\:\:\:\:\frac{\partial\varphi_{\mathrm{1}} }{\partial{v}}}\\{\frac{\partial\varphi_{\mathrm{2}} }{\partial{u}}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\frac{\partial\varphi_{\mathrm{2}} }{\partial{v}}}\end{pmatrix} \\ $$$$=\:\begin{pmatrix}{−\mathrm{1}\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{1}}\\{\mathrm{2}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:−\mathrm{1}}\end{pmatrix}\:\:\:\:{and}\:{detM}_{{j}} =−\mathrm{1}\:\Rightarrow \\ $$$${we}\:{have}\:\mathrm{1}\leqslant{x}\leqslant\mathrm{3}\:{and}\:\mathrm{1}\leqslant{y}\leqslant\mathrm{3}\:\Rightarrow\mathrm{2}\leqslant{x}+{y}\leqslant\mathrm{6}\:\Rightarrow \\ $$$$\mathrm{2}\leqslant{u}\leqslant\mathrm{6} \\ $$$$\mathrm{2}\leqslant\mathrm{2}{x}\leqslant\mathrm{6}\:\Rightarrow\mathrm{3}\leqslant\mathrm{2}{x}+{y}\leqslant\mathrm{9}\:\Rightarrow\mathrm{3}\leqslant{v}\leqslant\mathrm{9}\:\Rightarrow \\ $$$${I}=\int\int_{\mathrm{2}\leqslant{u}\leqslant\mathrm{6}\:\:{and}\:\mathrm{3}\leqslant{v}\leqslant\mathrm{9}} \:\:\:\:{e}^{−{u}} {lnv}\:{du}\:{dv} \\ $$$$=\int_{\mathrm{2}} ^{\mathrm{6}} \:{e}^{−{u}} {du}\:.\int_{\mathrm{3}} ^{\mathrm{9}} {lnv}\:{dv} \\ $$$$=\left[−{e}^{−{u}} \right]_{\mathrm{2}} ^{\mathrm{6}} .\left[{vlnv}−{v}\right]_{\mathrm{3}} ^{\mathrm{9}} \\ $$$$=\left(\:{e}^{−\mathrm{2}} −{e}^{−\mathrm{6}} \right)\left(\mathrm{9}{ln}\left(\mathrm{9}\right)−\mathrm{9}−\mathrm{3}{ln}\left(\mathrm{3}\right)+\mathrm{3}\right) \\ $$$$=\left({e}^{−\mathrm{2}} −{e}^{−\mathrm{6}} \right)\left(\mathrm{15}{ln}\left(\mathrm{3}\right)−\mathrm{6}\right) \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com