Question and Answers Forum

All Questions      Topic List

Coordinate Geometry Questions

Previous in All Question      Next in All Question      

Previous in Coordinate Geometry      Next in Coordinate Geometry      

Question Number 70949 by ajfour last updated on 10/Oct/19

Commented by ajfour last updated on 10/Oct/19

For coordinate geometry experts!

$${For}\:{coordinate}\:{geometry}\:{experts}! \\ $$

Commented by ajfour last updated on 10/Oct/19

Find k in terms of a,b,c.

$${Find}\:\boldsymbol{{k}}\:{in}\:{terms}\:{of}\:{a},{b},{c}. \\ $$

Commented by ajfour last updated on 10/Oct/19

(1/(4k^2 tan^2 θ))=b+bsin θ  (1/(4k^2 tan^2 φ))=a+asin φ  (1/(2ktan θ))+(1/(2ktan φ))+bcos θ+acos φ=c  we need to eliminate θ and φ  then determine k.  (please help..)

$$\frac{\mathrm{1}}{\mathrm{4}{k}^{\mathrm{2}} \mathrm{tan}\:^{\mathrm{2}} \theta}={b}+{b}\mathrm{sin}\:\theta \\ $$$$\frac{\mathrm{1}}{\mathrm{4}{k}^{\mathrm{2}} \mathrm{tan}\:^{\mathrm{2}} \phi}={a}+{a}\mathrm{sin}\:\phi \\ $$$$\frac{\mathrm{1}}{\mathrm{2}{k}\mathrm{tan}\:\theta}+\frac{\mathrm{1}}{\mathrm{2}{k}\mathrm{tan}\:\phi}+{b}\mathrm{cos}\:\theta+{a}\mathrm{cos}\:\phi={c} \\ $$$${we}\:{need}\:{to}\:{eliminate}\:\theta\:{and}\:\phi \\ $$$${then}\:{determine}\:\boldsymbol{{k}}. \\ $$$$\left({please}\:{help}..\right) \\ $$

Answered by mr W last updated on 10/Oct/19

B(p,kp^2 )  center of circle S(q,r)  tan θ=y′=2kp=((q−p)/(kp^2 −r))  ⇒q−p=2kp(kp^2 −r)  (p−q)^2 +(kp^2 −r)^2 =r^2   (4k^2 p^2 +1)(kp^2 −r)^2 =r^2   let P=p^2   (4k^2 P+1)(kP−r)^2 =r^2   ⇒4k^3 P^2 −k(8kr−1)P+2r(2kr−1)=0  ⇒P=p^2 =((8kr−1+(√(16kr+1)))/(8k^2 ))  ⇒p=(1/(2k))(√((8kr−1+(√(16kr+1)))/2))  q=[2k(kp^2 −r)+1]p  ⇒q=((3+(√(16kr+1)))/(8k))(√((8kr−1+(√(16kr+1)))/2))  ⇒q_a =((3+(√(16ka+1)))/(8k))(√((8ka−1+(√(16ka+1)))/2))  ⇒q_b =((3+(√(16kb+1)))/(8k))(√((8kb−1+(√(16kb+1)))/2))  q_a +q_b =c  ⇒((3+(√(16ka+1)))/(8k))(√((8ka−1+(√(16ka+1)))/2))    +((3+(√(16ka+1)))/(8k))(√((8ka−1+(√(16ka+1)))/2))=c  ⇒k=.....in terms of a,b,c    examples:  a=3, b=2, c=8  ⇒k=1.2412  a=4, b=4, c=10  ⇒k=4.2324

$${B}\left({p},{kp}^{\mathrm{2}} \right) \\ $$$${center}\:{of}\:{circle}\:{S}\left({q},{r}\right) \\ $$$$\mathrm{tan}\:\theta={y}'=\mathrm{2}{kp}=\frac{{q}−{p}}{{kp}^{\mathrm{2}} −{r}} \\ $$$$\Rightarrow{q}−{p}=\mathrm{2}{kp}\left({kp}^{\mathrm{2}} −{r}\right) \\ $$$$\left({p}−{q}\right)^{\mathrm{2}} +\left({kp}^{\mathrm{2}} −{r}\right)^{\mathrm{2}} ={r}^{\mathrm{2}} \\ $$$$\left(\mathrm{4}{k}^{\mathrm{2}} {p}^{\mathrm{2}} +\mathrm{1}\right)\left({kp}^{\mathrm{2}} −{r}\right)^{\mathrm{2}} ={r}^{\mathrm{2}} \\ $$$${let}\:{P}={p}^{\mathrm{2}} \\ $$$$\left(\mathrm{4}{k}^{\mathrm{2}} {P}+\mathrm{1}\right)\left({kP}−{r}\right)^{\mathrm{2}} ={r}^{\mathrm{2}} \\ $$$$\Rightarrow\mathrm{4}{k}^{\mathrm{3}} {P}^{\mathrm{2}} −{k}\left(\mathrm{8}{kr}−\mathrm{1}\right){P}+\mathrm{2}{r}\left(\mathrm{2}{kr}−\mathrm{1}\right)=\mathrm{0} \\ $$$$\Rightarrow{P}={p}^{\mathrm{2}} =\frac{\mathrm{8}{kr}−\mathrm{1}+\sqrt{\mathrm{16}{kr}+\mathrm{1}}}{\mathrm{8}{k}^{\mathrm{2}} } \\ $$$$\Rightarrow{p}=\frac{\mathrm{1}}{\mathrm{2}{k}}\sqrt{\frac{\mathrm{8}{kr}−\mathrm{1}+\sqrt{\mathrm{16}{kr}+\mathrm{1}}}{\mathrm{2}}} \\ $$$${q}=\left[\mathrm{2}{k}\left({kp}^{\mathrm{2}} −{r}\right)+\mathrm{1}\right]{p} \\ $$$$\Rightarrow{q}=\frac{\mathrm{3}+\sqrt{\mathrm{16}{kr}+\mathrm{1}}}{\mathrm{8}{k}}\sqrt{\frac{\mathrm{8}{kr}−\mathrm{1}+\sqrt{\mathrm{16}{kr}+\mathrm{1}}}{\mathrm{2}}} \\ $$$$\Rightarrow{q}_{{a}} =\frac{\mathrm{3}+\sqrt{\mathrm{16}{ka}+\mathrm{1}}}{\mathrm{8}{k}}\sqrt{\frac{\mathrm{8}{ka}−\mathrm{1}+\sqrt{\mathrm{16}{ka}+\mathrm{1}}}{\mathrm{2}}} \\ $$$$\Rightarrow{q}_{{b}} =\frac{\mathrm{3}+\sqrt{\mathrm{16}{kb}+\mathrm{1}}}{\mathrm{8}{k}}\sqrt{\frac{\mathrm{8}{kb}−\mathrm{1}+\sqrt{\mathrm{16}{kb}+\mathrm{1}}}{\mathrm{2}}} \\ $$$${q}_{{a}} +{q}_{{b}} ={c} \\ $$$$\Rightarrow\frac{\mathrm{3}+\sqrt{\mathrm{16}{ka}+\mathrm{1}}}{\mathrm{8}{k}}\sqrt{\frac{\mathrm{8}{ka}−\mathrm{1}+\sqrt{\mathrm{16}{ka}+\mathrm{1}}}{\mathrm{2}}} \\ $$$$\:\:+\frac{\mathrm{3}+\sqrt{\mathrm{16}{ka}+\mathrm{1}}}{\mathrm{8}{k}}\sqrt{\frac{\mathrm{8}{ka}−\mathrm{1}+\sqrt{\mathrm{16}{ka}+\mathrm{1}}}{\mathrm{2}}}={c} \\ $$$$\Rightarrow{k}=.....{in}\:{terms}\:{of}\:{a},{b},{c} \\ $$$$ \\ $$$${examples}: \\ $$$${a}=\mathrm{3},\:{b}=\mathrm{2},\:{c}=\mathrm{8} \\ $$$$\Rightarrow{k}=\mathrm{1}.\mathrm{2412} \\ $$$${a}=\mathrm{4},\:{b}=\mathrm{4},\:{c}=\mathrm{10} \\ $$$$\Rightarrow{k}=\mathrm{4}.\mathrm{2324} \\ $$

Commented by mr W last updated on 10/Oct/19

Commented by mr W last updated on 10/Oct/19

Commented by ajfour last updated on 10/Oct/19

Thank you Sir, you brought it  to a single equation in k.  Very nice solution!

$${Thank}\:{you}\:{Sir},\:{you}\:{brought}\:{it} \\ $$$${to}\:{a}\:{single}\:{equation}\:{in}\:{k}. \\ $$$${Very}\:{nice}\:{solution}! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com