Question Number 71073 by TawaTawa last updated on 11/Oct/19

Commented byPrithwish sen last updated on 11/Oct/19

a^2 = b^2 +c^2 +2bc  ∴ bc = ((a^2 −b^2 −c^2 )/2)⇒ a^2 −bc = ((a^2 +b^2 +c^2 )/2)  Similarly       b^2 −ca =  ((a^2 +b^2 +c^2 )/2)                              c^2 −ab = ((a^2 +b^2 +c^2 )/2)  ∴ the expression         ((2a^2 )/(a^2 +b^2 +c^2 )) +((2b^2 )/(a^2 +b^2 +c^2 ))+((2c^2 )/(a^2 +b^2 +c^2 )) = 2

Commented byHenri Boucatchou last updated on 11/Oct/19

Nice...

Commented byPrithwish sen last updated on 11/Oct/19

Thank you Sir.

Commented byTawaTawa last updated on 11/Oct/19

God bless you sir

Answered by $@ty@m123 last updated on 11/Oct/19

Following method can be used  to find quick solution of MCQ:  Let a=−1, b=0,c=1  ∴ Given expression:  1+0+1=2

Commented byMJS last updated on 11/Oct/19

but then it′s not valid for all values of a, b, c  with a+b+c=0

Commented by$@ty@m123 last updated on 11/Oct/19

Can you give an example?

Commented by$@ty@m123 last updated on 11/Oct/19

Of course,  this is not a proper (traditional)  way, but in MCQ type tests, we need tricky  approach to save time.

Answered by MJS last updated on 11/Oct/19

c=−(a+b)  (a^2 /(a^2 +ab+b^2 ))+(b^2 /(a^2 +ab+b^2 ))+(((a+b)^2 )/(a^2 +ab+b^2 ))=2

Commented byPrithwish sen last updated on 11/Oct/19

<Excellent Sir !

Commented byMJS last updated on 11/Oct/19

thank you

Commented byTawaTawa last updated on 11/Oct/19

God bless you sir

Answered by peter frank last updated on 11/Oct/19

a+b+c=0  a=−b−c  a^2 =−ab−ac....(i)  a+b+c=0  b=−a−c  b^2 =−ab−cb....(ii)  a+b+c=0  c=−a−b  c^2 =−ac−bc.....(iii)  from  (a^2 /(a^2 −bc))+(b^2 /(b^2 −ca))+(c^2 /(c^2 −ab))....(iv)  substitutes i ii iii in iv  a^2 =−ab−ac....(i)  b^2 =−ab−cb....(ii)  c^2 =−ac−bc.....(iii)  ((ab+ca)/(ab+ca+bc))+((ba+bc)/(ab+ca+bc))+((ca+cb)/(ab+ca+bc))  ((2ab+2ac+2bc)/(ab+ca+bc))  2

Commented byTawaTawa last updated on 11/Oct/19

God bless you sir