Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 71082 by aliesam last updated on 11/Oct/19

prove that     ∣ (√(∣x∣)) − (√(∣y∣)) ∣ ≤ (√(∣x−y∣))

$${prove}\:{that}\: \\ $$$$ \\ $$$$\mid\:\sqrt{\mid{x}\mid}\:−\:\sqrt{\mid{y}\mid}\:\mid\:\leqslant\:\sqrt{\mid{x}−{y}\mid}\: \\ $$$$ \\ $$

Answered by Henri Boucatchou last updated on 11/Oct/19

As  ∣x∣ − ∣y∣ ≤ ∣∣x∣ − ∣y∣∣ ≤ ∣x − y∣,    (√(∣x∣)) − (√(∣y∣)) ≤ ∣(√(∣x∣)) − (√(∣y∣))∣      If  ∣(√(∣x∣)) − (√(∣y∣))∣ > (√(∣x − y∣)) ,  take  x=4  and  y=9 ⇒  ∣(√4) − (√9)∣ = ∣2−3∣ = 1 > (√(∣4−9∣)) = (√5) :  absurd;    so  ∣(√(∣x∣)) − (√(∣y∣))∣ ≤ (√(∣x − y∣)).

$${As}\:\:\mid{x}\mid\:−\:\mid{y}\mid\:\leqslant\:\mid\mid{x}\mid\:−\:\mid{y}\mid\mid\:\leqslant\:\mid{x}\:−\:{y}\mid, \\ $$$$\:\:\sqrt{\mid{x}\mid}\:−\:\sqrt{\mid{y}\mid}\:\leqslant\:\mid\sqrt{\mid{x}\mid}\:−\:\sqrt{\mid{y}\mid}\mid\:\: \\ $$$$\:\:{If}\:\:\mid\sqrt{\mid{x}\mid}\:−\:\sqrt{\mid{y}\mid}\mid\:>\:\sqrt{\mid{x}\:−\:{y}\mid}\:,\:\:{take}\:\:{x}=\mathrm{4}\:\:{and}\:\:{y}=\mathrm{9}\:\Rightarrow\:\:\mid\sqrt{\mathrm{4}}\:−\:\sqrt{\mathrm{9}}\mid\:=\:\mid\mathrm{2}−\mathrm{3}\mid\:=\:\mathrm{1}\:>\:\sqrt{\mid\mathrm{4}−\mathrm{9}\mid}\:=\:\sqrt{\mathrm{5}}\::\:\:{absurd}; \\ $$$$\:\:{so}\:\:\mid\sqrt{\mid{x}\mid}\:−\:\sqrt{\mid{y}\mid}\mid\:\leqslant\:\sqrt{\mid{x}\:−\:{y}\mid}. \\ $$

Commented by aliesam last updated on 11/Oct/19

can you prove that without using numbers and thank you for that sol

$${can}\:{you}\:{prove}\:{that}\:{without}\:{using}\:{numbers}\:{and}\:{thank}\:{you}\:{for}\:{that}\:{sol} \\ $$

Answered by mind is power last updated on 11/Oct/19

if xy≤0  its   clear  xy≥0  we can switch  (x,y) by (y,x) without changing inqyality  and change (x,y) withe (−x,−y) withoute changing the inquality  ⇒we can  so reduce possibilty st  x≥y≥0  ⇒(√x)≥(√y)  ⇒−2(√(xy))≤−2y  ⇒x+y−2(√(xy))≤x+y−2y  ⇒((√x)−(√y))^2 ≤(x−y)=((√(x−y)))^2   ⇒(√x)−(√y)≤(√(x−y))  ∴ since xy≥0 we are  (x≥0,y≥0)∪(x≤0,y≤0)  change (x,y) and (−x,−y)⇒R(x,y)elation is symetric over ofigine  so we can reduce (x≥0,y≥0) change (x,y) and (y,x) ⇒relation  symetric over y=x⇒R(x,y)∣x≥y⇔R(x,y)∣y≤x

$$\mathrm{if}\:\mathrm{xy}\leqslant\mathrm{0}\:\:\mathrm{its}\:\:\:\mathrm{clear} \\ $$$$\mathrm{xy}\geqslant\mathrm{0} \\ $$$$\mathrm{we}\:\mathrm{can}\:\mathrm{switch}\:\:\left(\mathrm{x},\mathrm{y}\right)\:\mathrm{by}\:\left(\mathrm{y},\mathrm{x}\right)\:\mathrm{without}\:\mathrm{changing}\:\mathrm{inqyality} \\ $$$$\mathrm{and}\:\mathrm{change}\:\left(\mathrm{x},\mathrm{y}\right)\:\mathrm{withe}\:\left(−\mathrm{x},−\mathrm{y}\right)\:\mathrm{withoute}\:\mathrm{changing}\:\mathrm{the}\:\mathrm{inquality} \\ $$$$\Rightarrow\mathrm{we}\:\mathrm{can}\:\:\mathrm{so}\:\mathrm{reduce}\:\mathrm{possibilty}\:\mathrm{st} \\ $$$$\mathrm{x}\geqslant\mathrm{y}\geqslant\mathrm{0} \\ $$$$\Rightarrow\sqrt{\mathrm{x}}\geqslant\sqrt{\mathrm{y}} \\ $$$$\Rightarrow−\mathrm{2}\sqrt{\mathrm{xy}}\leqslant−\mathrm{2y} \\ $$$$\Rightarrow\mathrm{x}+\mathrm{y}−\mathrm{2}\sqrt{\mathrm{xy}}\leqslant\mathrm{x}+\mathrm{y}−\mathrm{2y} \\ $$$$\Rightarrow\left(\sqrt{\mathrm{x}}−\sqrt{\mathrm{y}}\right)^{\mathrm{2}} \leqslant\left(\mathrm{x}−\mathrm{y}\right)=\left(\sqrt{\mathrm{x}−\mathrm{y}}\right)^{\mathrm{2}} \\ $$$$\Rightarrow\sqrt{\mathrm{x}}−\sqrt{\mathrm{y}}\leqslant\sqrt{\mathrm{x}−\mathrm{y}} \\ $$$$\therefore\:\mathrm{since}\:\mathrm{xy}\geqslant\mathrm{0}\:\mathrm{we}\:\mathrm{are}\:\:\left(\mathrm{x}\geqslant\mathrm{0},\mathrm{y}\geqslant\mathrm{0}\right)\cup\left(\mathrm{x}\leqslant\mathrm{0},\mathrm{y}\leqslant\mathrm{0}\right) \\ $$$$\mathrm{change}\:\left(\mathrm{x},\mathrm{y}\right)\:\mathrm{and}\:\left(−\mathrm{x},−\mathrm{y}\right)\Rightarrow\mathrm{R}\left(\mathrm{x},\mathrm{y}\right)\mathrm{elation}\:\mathrm{is}\:\mathrm{symetric}\:\mathrm{over}\:\mathrm{ofigine} \\ $$$$\mathrm{so}\:\mathrm{we}\:\mathrm{can}\:\mathrm{reduce}\:\left(\mathrm{x}\geqslant\mathrm{0},\mathrm{y}\geqslant\mathrm{0}\right)\:\mathrm{change}\:\left(\mathrm{x},\mathrm{y}\right)\:\mathrm{and}\:\left(\mathrm{y},\mathrm{x}\right)\:\Rightarrow\mathrm{relation} \\ $$$$\mathrm{symetric}\:\mathrm{over}\:\mathrm{y}=\mathrm{x}\Rightarrow\mathrm{R}\left(\mathrm{x},\mathrm{y}\right)\mid\mathrm{x}\geqslant\mathrm{y}\Leftrightarrow\mathrm{R}\left(\mathrm{x},\mathrm{y}\right)\mid\mathrm{y}\leqslant\mathrm{x} \\ $$$$ \\ $$

Commented by aliesam last updated on 11/Oct/19

thank you sir great work

$${thank}\:{you}\:{sir}\:{great}\:{work} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com