Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 71184 by ajfour last updated on 12/Oct/19

Commented by ajfour last updated on 12/Oct/19

Each semicircle have radius  unity. Find maximum value of x.

$${Each}\:{semicircle}\:{have}\:{radius} \\ $$$${unity}.\:{Find}\:{maximum}\:{value}\:{of}\:{x}. \\ $$

Commented by ajfour last updated on 12/Oct/19

Commented by mr W last updated on 13/Oct/19

(1−r)(√(1−(((b−1+1−r)/(1−r)))^2 ))= 1−(1−r)(√(1−(((1−1+r)/(1−r)))^2 ))  let μ=1−b, λ=1−r  λ(√(1−(((−μ+λ)/λ))^2 ))= 1−λ(√(1−(((1−λ)/λ))^2 ))  (√(2μλ−μ^2 ))= 1−(√(2λ−1))  2λ(1−μ)+μ^2 = 2(√(2λ−1))  4(1−μ)^2 λ^2 −4(2−μ^2 +μ^3 )λ+μ^4 +4=0  λ=(((2−μ^2 +μ^3 )−(√((2−μ^2 +μ^3 )^2 −(1−μ)^2 (4+μ^4 ))))/(2(1−μ)^2 ))  ⇒λ_(min) =0.5858 at μ=0.5858  ⇒r_(max) =1−0.5858=0.4142=(√2)−1

$$\left(\mathrm{1}−{r}\right)\sqrt{\mathrm{1}−\left(\frac{{b}−\mathrm{1}+\mathrm{1}−{r}}{\mathrm{1}−{r}}\right)^{\mathrm{2}} }=\:\mathrm{1}−\left(\mathrm{1}−{r}\right)\sqrt{\mathrm{1}−\left(\frac{\mathrm{1}−\mathrm{1}+{r}}{\mathrm{1}−{r}}\right)^{\mathrm{2}} } \\ $$$${let}\:\mu=\mathrm{1}−{b},\:\lambda=\mathrm{1}−{r} \\ $$$$\lambda\sqrt{\mathrm{1}−\left(\frac{−\mu+\lambda}{\lambda}\right)^{\mathrm{2}} }=\:\mathrm{1}−\lambda\sqrt{\mathrm{1}−\left(\frac{\mathrm{1}−\lambda}{\lambda}\right)^{\mathrm{2}} } \\ $$$$\sqrt{\mathrm{2}\mu\lambda−\mu^{\mathrm{2}} }=\:\mathrm{1}−\sqrt{\mathrm{2}\lambda−\mathrm{1}} \\ $$$$\mathrm{2}\lambda\left(\mathrm{1}−\mu\right)+\mu^{\mathrm{2}} =\:\mathrm{2}\sqrt{\mathrm{2}\lambda−\mathrm{1}} \\ $$$$\mathrm{4}\left(\mathrm{1}−\mu\right)^{\mathrm{2}} \lambda^{\mathrm{2}} −\mathrm{4}\left(\mathrm{2}−\mu^{\mathrm{2}} +\mu^{\mathrm{3}} \right)\lambda+\mu^{\mathrm{4}} +\mathrm{4}=\mathrm{0} \\ $$$$\lambda=\frac{\left(\mathrm{2}−\mu^{\mathrm{2}} +\mu^{\mathrm{3}} \right)−\sqrt{\left(\mathrm{2}−\mu^{\mathrm{2}} +\mu^{\mathrm{3}} \right)^{\mathrm{2}} −\left(\mathrm{1}−\mu\right)^{\mathrm{2}} \left(\mathrm{4}+\mu^{\mathrm{4}} \right)}}{\mathrm{2}\left(\mathrm{1}−\mu\right)^{\mathrm{2}} } \\ $$$$\Rightarrow\lambda_{{min}} =\mathrm{0}.\mathrm{5858}\:{at}\:\mu=\mathrm{0}.\mathrm{5858} \\ $$$$\Rightarrow{r}_{{max}} =\mathrm{1}−\mathrm{0}.\mathrm{5858}=\mathrm{0}.\mathrm{4142}=\sqrt{\mathrm{2}}−\mathrm{1} \\ $$

Commented by ajfour last updated on 13/Oct/19

x_C =(1−r)sin β=1−(1−r)cos α  y_C =b−(1−r)cos β=(1−r)sin α=r   (1−r)[(√(1−(((b−r)/(1−r)))^2 ))+(√(1−((r/(1−r)))^2 ))=1                             ........(i)  (dr/db)=0  ⇒    (1/(2(√(1−(((b−r)/(1−r)))^2 )))){((2(b−r)(1−r)^2 −2(1−r)(b−r)^2 )/((1−r)^4 ))}               =(1/(1−r))  ⇒ (((1−b)(b−r))/((1−r)^2 ))=(√(1−(((b−r)/(1−r)))^2 ))  ..(ii)  let b−r=λ(1−r)  ⇒  1−b=1−r−λ(1−r)  from (ii)  ⇒  λ(1−λ)=(√(1−λ^2 ))    ⇒   λ^2 (1−λ)= 1+λ   or     λ^3 −λ^2 +λ+1=0  .....

$${x}_{{C}} =\left(\mathrm{1}−{r}\right)\mathrm{sin}\:\beta=\mathrm{1}−\left(\mathrm{1}−{r}\right)\mathrm{cos}\:\alpha \\ $$$${y}_{{C}} ={b}−\left(\mathrm{1}−{r}\right)\mathrm{cos}\:\beta=\left(\mathrm{1}−{r}\right)\mathrm{sin}\:\alpha={r} \\ $$$$\:\left(\mathrm{1}−{r}\right)\left[\sqrt{\mathrm{1}−\left(\frac{{b}−{r}}{\mathrm{1}−{r}}\right)^{\mathrm{2}} }+\sqrt{\mathrm{1}−\left(\frac{{r}}{\mathrm{1}−{r}}\right)^{\mathrm{2}} }=\mathrm{1}\right. \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:........\left({i}\right) \\ $$$$\frac{{dr}}{{db}}=\mathrm{0}\:\:\Rightarrow \\ $$$$\:\:\frac{\mathrm{1}}{\mathrm{2}\sqrt{\mathrm{1}−\left(\frac{{b}−{r}}{\mathrm{1}−{r}}\right)^{\mathrm{2}} }}\left\{\frac{\mathrm{2}\left({b}−{r}\right)\left(\mathrm{1}−{r}\right)^{\mathrm{2}} −\mathrm{2}\left(\mathrm{1}−{r}\right)\left({b}−{r}\right)^{\mathrm{2}} }{\left(\mathrm{1}−{r}\right)^{\mathrm{4}} }\right\} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:=\frac{\mathrm{1}}{\mathrm{1}−{r}} \\ $$$$\Rightarrow\:\frac{\left(\mathrm{1}−{b}\right)\left({b}−{r}\right)}{\left(\mathrm{1}−{r}\right)^{\mathrm{2}} }=\sqrt{\mathrm{1}−\left(\frac{{b}−{r}}{\mathrm{1}−{r}}\right)^{\mathrm{2}} }\:\:..\left({ii}\right) \\ $$$${let}\:{b}−{r}=\lambda\left(\mathrm{1}−{r}\right) \\ $$$$\Rightarrow\:\:\mathrm{1}−{b}=\mathrm{1}−{r}−\lambda\left(\mathrm{1}−{r}\right) \\ $$$${from}\:\left({ii}\right) \\ $$$$\Rightarrow\:\:\lambda\left(\mathrm{1}−\lambda\right)=\sqrt{\mathrm{1}−\lambda^{\mathrm{2}} }\: \\ $$$$\:\Rightarrow\:\:\:\lambda^{\mathrm{2}} \left(\mathrm{1}−\lambda\right)=\:\mathrm{1}+\lambda\: \\ $$$${or}\:\:\:\:\:\lambda^{\mathrm{3}} −\lambda^{\mathrm{2}} +\lambda+\mathrm{1}=\mathrm{0} \\ $$$$..... \\ $$

Answered by mr W last updated on 13/Oct/19

center of semicircle 1: (0,0)  center of semicircle 2: (1,k)  center of small circle: (h,r)  h^2 +r^2 =(1−r)^2    ...(i)  (1−h)^2 +(k−r)^2 =(1−r)^2    ...(ii)  (i)−(ii):  2h−1+k(2r−k)=0  ⇒h=((1+k^2 )/2)−kr  put into (i):  (((1+k^2 )/2)−kr)^2 =1−2r  k^2 r^2 −(k+k^3 −2)r−1+(((1+k^2 )^2 )/4)=0  ⇒r=((k(1+k^2 )−2+2(√((1−k)(1+k^2 ))))/(2k^2 ))  (dr/dk)=0 ⇒ complicated eqn. for k !  numerically:  r_(max) =0.4142 (=(√2)−1) at k=0.4142

$${center}\:{of}\:{semicircle}\:\mathrm{1}:\:\left(\mathrm{0},\mathrm{0}\right) \\ $$$${center}\:{of}\:{semicircle}\:\mathrm{2}:\:\left(\mathrm{1},{k}\right) \\ $$$${center}\:{of}\:{small}\:{circle}:\:\left({h},{r}\right) \\ $$$${h}^{\mathrm{2}} +{r}^{\mathrm{2}} =\left(\mathrm{1}−{r}\right)^{\mathrm{2}} \:\:\:...\left({i}\right) \\ $$$$\left(\mathrm{1}−{h}\right)^{\mathrm{2}} +\left({k}−{r}\right)^{\mathrm{2}} =\left(\mathrm{1}−{r}\right)^{\mathrm{2}} \:\:\:...\left({ii}\right) \\ $$$$\left({i}\right)−\left({ii}\right): \\ $$$$\mathrm{2}{h}−\mathrm{1}+{k}\left(\mathrm{2}{r}−{k}\right)=\mathrm{0} \\ $$$$\Rightarrow{h}=\frac{\mathrm{1}+{k}^{\mathrm{2}} }{\mathrm{2}}−{kr} \\ $$$${put}\:{into}\:\left({i}\right): \\ $$$$\left(\frac{\mathrm{1}+{k}^{\mathrm{2}} }{\mathrm{2}}−{kr}\right)^{\mathrm{2}} =\mathrm{1}−\mathrm{2}{r} \\ $$$${k}^{\mathrm{2}} {r}^{\mathrm{2}} −\left({k}+{k}^{\mathrm{3}} −\mathrm{2}\right){r}−\mathrm{1}+\frac{\left(\mathrm{1}+{k}^{\mathrm{2}} \right)^{\mathrm{2}} }{\mathrm{4}}=\mathrm{0} \\ $$$$\Rightarrow{r}=\frac{{k}\left(\mathrm{1}+{k}^{\mathrm{2}} \right)−\mathrm{2}+\mathrm{2}\sqrt{\left(\mathrm{1}−{k}\right)\left(\mathrm{1}+{k}^{\mathrm{2}} \right)}}{\mathrm{2}{k}^{\mathrm{2}} } \\ $$$$\frac{{dr}}{{dk}}=\mathrm{0}\:\Rightarrow\:{complicated}\:{eqn}.\:{for}\:{k}\:! \\ $$$${numerically}: \\ $$$${r}_{{max}} =\mathrm{0}.\mathrm{4142}\:\left(=\sqrt{\mathrm{2}}−\mathrm{1}\right)\:{at}\:{k}=\mathrm{0}.\mathrm{4142} \\ $$

Commented by mr W last updated on 13/Oct/19

Commented by ajfour last updated on 13/Oct/19

Thanks so much Sir, i yet think  its possible to get an entire  solution, am trying..

$${Thanks}\:{so}\:{much}\:{Sir},\:{i}\:{yet}\:{think} \\ $$$${its}\:{possible}\:{to}\:{get}\:{an}\:{entire} \\ $$$${solution},\:{am}\:{trying}.. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com