Question Number 71206 by naka3546 last updated on 13/Oct/19

Let  p,q,r  are  positive  real  numbers .  0 < r < min{p,q}.  Prove  that       (√(p−r)) + (√(q−r))  ≤  min{(√((pq)/r)) , (√(2(p+q − 2r))) }

Answered by mind is power last updated on 13/Oct/19

(√(p−r ))+(√(q−r ))=≤(√(2(p+q−2r)))  (√x)+(√y)≤(√(2x+2y))  cause x+y−2(√(xy))=((√x)−(√y))^2 ≥0  ⇒x+y+2(√(xy))≤2x+2y  ⇒(√x)+(√y)≤(√(2(x+y)))  ⇒x=p−r y=q−r  (√(p−r))+(√(q−r))≤(√(2(p+q−2r)))....1  (√(p−r))+(√(q−r))≤(√((pq)/r))  (√(p−r))+(√(q−r))=(√r)(√((p/r)−1))+(√r)(√((q/r)−1))  (√(x−1))+(√(y−1))≤(√(xy  ))  x+y−2+2(√((x−1)(y−1)))≤xy  2(√((x−1)(y−1)))≤xy−x−y+2=(x−1)(y−1)+1  ⇒((√((x−1)(y−1)))−1)^2 ≥0  True  x=(p/r),y=(q/r)⇒  (√((p/r)−1))+(√((q/r)−1))≤(√((pq)/r^2 ))  ⇒(√r)((√((p/r)−1))+(√((q/r)−1)))≤(√((pq)/r))...2  2&1⇒  (√(p−r))+(√(q−r))≤min{(√((pq)/r)),(√(2(p+q−2r)))}