Question and Answers Forum

All Questions      Topic List

Mechanics Questions

Previous in All Question      Next in All Question      

Previous in Mechanics      Next in Mechanics      

Question Number 71311 by ajfour last updated on 13/Oct/19

Commented by ajfour last updated on 13/Oct/19

Assuming elastic collision,   find d_(max)   and corresponding  value for x.

$${Assuming}\:{elastic}\:{collision},\: \\ $$$${find}\:{d}_{{max}} \:\:{and}\:{corresponding} \\ $$$${value}\:{for}\:{x}. \\ $$

Answered by mr W last updated on 13/Oct/19

Commented by mr W last updated on 13/Oct/19

α=(π/2)−ϕ  θ=ϕ−α=2ϕ−(π/2)  ((mu^2 )/2)=mg(h−R sin ϕ)  u=(√(2g(h−R sin ϕ)))  −R sin ϕ=u sin θ t−(1/2)gt^2   0=−R sin ϕ+u cos 2ϕ t+(1/2)gt^2   t=((−u cos 2ϕ+(√(u^2 cos^2  2ϕ+2gR sin ϕ)))/g)  t=((−u cos 2ϕ+(√(2g(h−R sin ϕ)cos^2  2ϕ+2gR sin ϕ)))/g)  d+R−R cos ϕ=u cos θ t  d+R−R cos ϕ=u sin 2ϕ t  d=u sin 2ϕ t−(1−cos ϕ)R  d=2R sin 2ϕ (√((h/R)−sin ϕ)){−cos 2ϕ(√((h/R)−sin ϕ))+(√(((h/R)−sin ϕ)cos^2  2ϕ+sin ϕ))}−(1−cos ϕ)R  with η=(h/R)  (d/R)=2 sin 2ϕ (√(η−sin ϕ)){−cos 2ϕ(√(η−sin ϕ))+(√((η−sin ϕ)cos^2  2ϕ+sin ϕ))}+cos ϕ−1  S=(d/R)=2 sin 2ϕ{−cos 2ϕ(η−sin ϕ)+(√([(η−sin ϕ)cos^2  2ϕ+sin ϕ](η−sin ϕ)))}+cos ϕ−1  (dS/dϕ)=0 ⇒ eqn. for ϕ  example:  η=(h/R)=4  ⇒(d_(max) /R)=6.4529 at ϕ=64.7775°

$$\alpha=\frac{\pi}{\mathrm{2}}−\varphi \\ $$$$\theta=\varphi−\alpha=\mathrm{2}\varphi−\frac{\pi}{\mathrm{2}} \\ $$$$\frac{{mu}^{\mathrm{2}} }{\mathrm{2}}={mg}\left({h}−{R}\:\mathrm{sin}\:\varphi\right) \\ $$$${u}=\sqrt{\mathrm{2}{g}\left({h}−{R}\:\mathrm{sin}\:\varphi\right)} \\ $$$$−{R}\:\mathrm{sin}\:\varphi={u}\:\mathrm{sin}\:\theta\:{t}−\frac{\mathrm{1}}{\mathrm{2}}{gt}^{\mathrm{2}} \\ $$$$\mathrm{0}=−{R}\:\mathrm{sin}\:\varphi+{u}\:\mathrm{cos}\:\mathrm{2}\varphi\:{t}+\frac{\mathrm{1}}{\mathrm{2}}{gt}^{\mathrm{2}} \\ $$$${t}=\frac{−{u}\:\mathrm{cos}\:\mathrm{2}\varphi+\sqrt{{u}^{\mathrm{2}} \mathrm{cos}^{\mathrm{2}} \:\mathrm{2}\varphi+\mathrm{2}{gR}\:\mathrm{sin}\:\varphi}}{{g}} \\ $$$${t}=\frac{−{u}\:\mathrm{cos}\:\mathrm{2}\varphi+\sqrt{\mathrm{2}{g}\left({h}−{R}\:\mathrm{sin}\:\varphi\right)\mathrm{cos}^{\mathrm{2}} \:\mathrm{2}\varphi+\mathrm{2}{gR}\:\mathrm{sin}\:\varphi}}{{g}} \\ $$$${d}+{R}−{R}\:\mathrm{cos}\:\varphi={u}\:\mathrm{cos}\:\theta\:{t} \\ $$$${d}+{R}−{R}\:\mathrm{cos}\:\varphi={u}\:\mathrm{sin}\:\mathrm{2}\varphi\:{t} \\ $$$${d}={u}\:\mathrm{sin}\:\mathrm{2}\varphi\:{t}−\left(\mathrm{1}−\mathrm{cos}\:\varphi\right){R} \\ $$$${d}=\mathrm{2}{R}\:\mathrm{sin}\:\mathrm{2}\varphi\:\sqrt{\frac{{h}}{{R}}−\mathrm{sin}\:\varphi}\left\{−\mathrm{cos}\:\mathrm{2}\varphi\sqrt{\frac{{h}}{{R}}−\mathrm{sin}\:\varphi}+\sqrt{\left(\frac{{h}}{{R}}−\mathrm{sin}\:\varphi\right)\mathrm{cos}^{\mathrm{2}} \:\mathrm{2}\varphi+\mathrm{sin}\:\varphi}\right\}−\left(\mathrm{1}−\mathrm{cos}\:\varphi\right){R} \\ $$$${with}\:\eta=\frac{{h}}{{R}} \\ $$$$\frac{{d}}{{R}}=\mathrm{2}\:\mathrm{sin}\:\mathrm{2}\varphi\:\sqrt{\eta−\mathrm{sin}\:\varphi}\left\{−\mathrm{cos}\:\mathrm{2}\varphi\sqrt{\eta−\mathrm{sin}\:\varphi}+\sqrt{\left(\eta−\mathrm{sin}\:\varphi\right)\mathrm{cos}^{\mathrm{2}} \:\mathrm{2}\varphi+\mathrm{sin}\:\varphi}\right\}+\mathrm{cos}\:\varphi−\mathrm{1} \\ $$$${S}=\frac{{d}}{{R}}=\mathrm{2}\:\mathrm{sin}\:\mathrm{2}\varphi\left\{−\mathrm{cos}\:\mathrm{2}\varphi\left(\eta−\mathrm{sin}\:\varphi\right)+\sqrt{\left[\left(\eta−\mathrm{sin}\:\varphi\right)\mathrm{cos}^{\mathrm{2}} \:\mathrm{2}\varphi+\mathrm{sin}\:\varphi\right]\left(\eta−\mathrm{sin}\:\varphi\right)}\right\}+\mathrm{cos}\:\varphi−\mathrm{1} \\ $$$$\frac{{dS}}{{d}\varphi}=\mathrm{0}\:\Rightarrow\:{eqn}.\:{for}\:\varphi \\ $$$${example}: \\ $$$$\eta=\frac{{h}}{{R}}=\mathrm{4} \\ $$$$\Rightarrow\frac{{d}_{{max}} }{{R}}=\mathrm{6}.\mathrm{4529}\:{at}\:\varphi=\mathrm{64}.\mathrm{7775}° \\ $$

Commented by mr W last updated on 13/Oct/19

Commented by ajfour last updated on 13/Oct/19

Awfully complicated it gets.  Thanks a lot Sir.Nevertheless,  you are amazing sir!

$${Awfully}\:{complicated}\:{it}\:{gets}. \\ $$$${Thanks}\:{a}\:{lot}\:{Sir}.{Nevertheless}, \\ $$$${you}\:{are}\:{amazing}\:{sir}! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com