Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 71326 by sadimuhmud 136 last updated on 13/Oct/19

(−64)^(1/6) =?(Is there any short cut for mcq)

$$\left(−\mathrm{64}\right)^{\frac{\mathrm{1}}{\mathrm{6}}} =?\left(\boldsymbol{\mathrm{I}}\mathrm{s}\:\mathrm{there}\:\mathrm{any}\:\mathrm{short}\:\mathrm{cut}\:\mathrm{for}\:\mathrm{mcq}\right) \\ $$

Answered by MJS last updated on 13/Oct/19

2^6 =64 ⇒ ((−64))^(1/6) =2i

$$\mathrm{2}^{\mathrm{6}} =\mathrm{64}\:\Rightarrow\:\sqrt[{\mathrm{6}}]{−\mathrm{64}}=\mathrm{2i} \\ $$

Commented by MJS last updated on 14/Oct/19

this depends on what you have already  learned.  usually first we learn ((−r))^(1/3) =−(r)^(1/3)  ∀r∈R^+   generally ((−r))^(1/(2n+1)) =−(r)^(1/(2n+1))  ∀n∈Z ∀r∈R^+   which indeed is the only exception of the  rule (z)^(1/n) =((re^(iθ) ))^(1/n) =(r)^(1/n) e^(i(θ/n))  in C    without this rule  ((−64))^(1/6) =(((−64))^(1/3) )^(1/2) =((−4))^(1/2) =2i       [not ((−64))^(1/6) =(((−64))^(1/2) )^(1/3) =((8i))^(1/3)  which can′t be         solved on this stage]    within this rule  ((−64))^(1/6) =((64e^(iπ) ))^(1/6) =((64))^(1/6) e^(i(π/6)) =2e^(i(π/6)) =(√3)+i

$$\mathrm{this}\:\mathrm{depends}\:\mathrm{on}\:\mathrm{what}\:\mathrm{you}\:\mathrm{have}\:\mathrm{already} \\ $$$$\mathrm{learned}. \\ $$$$\mathrm{usually}\:\mathrm{first}\:\mathrm{we}\:\mathrm{learn}\:\sqrt[{\mathrm{3}}]{−{r}}=−\sqrt[{\mathrm{3}}]{{r}}\:\forall{r}\in\mathbb{R}^{+} \\ $$$$\mathrm{generally}\:\sqrt[{\mathrm{2}{n}+\mathrm{1}}]{−{r}}=−\sqrt[{\mathrm{2}{n}+\mathrm{1}}]{{r}}\:\forall{n}\in\mathbb{Z}\:\forall{r}\in\mathbb{R}^{+} \\ $$$$\mathrm{which}\:\mathrm{indeed}\:\mathrm{is}\:\mathrm{the}\:\mathrm{only}\:\mathrm{exception}\:\mathrm{of}\:\mathrm{the} \\ $$$$\mathrm{rule}\:\sqrt[{{n}}]{{z}}=\sqrt[{{n}}]{{r}\mathrm{e}^{\mathrm{i}\theta} }=\sqrt[{{n}}]{{r}}\mathrm{e}^{\mathrm{i}\frac{\theta}{{n}}} \:\mathrm{in}\:\mathbb{C} \\ $$$$ \\ $$$$\mathrm{without}\:\mathrm{this}\:\mathrm{rule} \\ $$$$\sqrt[{\mathrm{6}}]{−\mathrm{64}}=\sqrt[{\mathrm{2}}]{\sqrt[{\mathrm{3}}]{−\mathrm{64}}}=\sqrt[{\mathrm{2}}]{−\mathrm{4}}=\mathrm{2i} \\ $$$$\:\:\:\:\:\left[\mathrm{not}\:\sqrt[{\mathrm{6}}]{−\mathrm{64}}=\sqrt[{\mathrm{3}}]{\sqrt[{\mathrm{2}}]{−\mathrm{64}}}=\sqrt[{\mathrm{3}}]{\mathrm{8i}}\:\mathrm{which}\:\mathrm{can}'\mathrm{t}\:\mathrm{be}\right. \\ $$$$\left.\:\:\:\:\:\:\:\mathrm{solved}\:\mathrm{on}\:\mathrm{this}\:\mathrm{stage}\right] \\ $$$$ \\ $$$$\mathrm{within}\:\mathrm{this}\:\mathrm{rule} \\ $$$$\sqrt[{\mathrm{6}}]{−\mathrm{64}}=\sqrt[{\mathrm{6}}]{\mathrm{64e}^{\mathrm{i}\pi} }=\sqrt[{\mathrm{6}}]{\mathrm{64}}\mathrm{e}^{\mathrm{i}\frac{\pi}{\mathrm{6}}} =\mathrm{2e}^{\mathrm{i}\frac{\pi}{\mathrm{6}}} =\sqrt{\mathrm{3}}+\mathrm{i} \\ $$

Answered by Kunal12588 last updated on 14/Oct/19

(−1)^(1/6) ×(2^6 )^(1/6) =i^(1/3) ×2=?

$$\left(−\mathrm{1}\right)^{\mathrm{1}/\mathrm{6}} ×\left(\mathrm{2}^{\mathrm{6}} \right)^{\mathrm{1}/\mathrm{6}} ={i}^{\mathrm{1}/\mathrm{3}} ×\mathrm{2}=? \\ $$

Commented by MJS last updated on 14/Oct/19

i^(1/3) =(e^(i(π/2)) )^(1/3) =e^(i(π/6)) =((√3)/2)+(1/2)i  and i^(1/3) ≠(1/i^3 )       [z^(1/3) =(1/z^3 ) ⇔ z^(1/3) z^3 =1 ⇔ z^(4/3) =1 ⇔ z=1]

$$\mathrm{i}^{\mathrm{1}/\mathrm{3}} =\left(\mathrm{e}^{\mathrm{i}\frac{\pi}{\mathrm{2}}} \right)^{\mathrm{1}/\mathrm{3}} =\mathrm{e}^{\mathrm{i}\frac{\pi}{\mathrm{6}}} =\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{2}}\mathrm{i} \\ $$$$\mathrm{and}\:\mathrm{i}^{\mathrm{1}/\mathrm{3}} \neq\frac{\mathrm{1}}{\mathrm{i}^{\mathrm{3}} } \\ $$$$\:\:\:\:\:\left[\mathrm{z}^{\frac{\mathrm{1}}{\mathrm{3}}} =\frac{\mathrm{1}}{\mathrm{z}^{\mathrm{3}} }\:\Leftrightarrow\:{z}^{\frac{\mathrm{1}}{\mathrm{3}}} {z}^{\mathrm{3}} =\mathrm{1}\:\Leftrightarrow\:{z}^{\frac{\mathrm{4}}{\mathrm{3}}} =\mathrm{1}\:\Leftrightarrow\:{z}=\mathrm{1}\right] \\ $$

Commented by Kunal12588 last updated on 14/Oct/19

ahhh, why they are so complex. yes because they are complex numbers! thanks sir.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com