Question and Answers Forum

All Questions      Topic List

Mechanics Questions

Previous in All Question      Next in All Question      

Previous in Mechanics      Next in Mechanics      

Question Number 71421 by ajfour last updated on 15/Oct/19

Commented by ajfour last updated on 15/Oct/19

Find speed of sphere as it rolls  down the wedge, and is about to  touch the ground. Also find the  least coefficient of friction,  so that sphere comes rolling all  the way; wedge isn′t fixed,  assume that ground is smooth.

Findspeedofsphereasitrollsdownthewedge,andisabouttotouchtheground.Alsofindtheleastcoefficientoffriction,sothatspherecomesrollingalltheway;wedgeisntfixed,assumethatgroundissmooth.

Answered by mr W last updated on 16/Oct/19

Commented by mr W last updated on 19/Oct/19

v=(ds/dt)=ωr  A=rα  α=(dω/dt)=(dω/ds)×(ds/dt)=(v/r)×(dv/ds)  I=((2mr^2 )/5)  Iα=rf  α=((rf)/I)=((5f)/(2mr))    Ma=−f cos θ+N sin θ  a=((−f cos θ+N sin θ)/M)    f=mg sin θ+ma cos θ−mrα  (7/2)f=mg sin θ+ma cos θ  N=mg cos θ−ma sin θ  (7/2)f=mg sin θ+(m/M)(−f cos θ+N sin θ) cos θ  ⇒((7/2)+(m/M) cos^2  θ)f−(m/M) sin θ cos θ N=mg sin θ  N=mg cos θ−(m/M)(−f cos θ+N sin θ) sin θ  ⇒−(m/M) sin θ cos θ f+(1+(m/M) sin^2  θ)N=mg cos θ  ⇒f=((mg sin θ (1+(m/M) sin^2  θ)−mg cos θ (−(m/M) sin θ cos θ))/(((7/2)+(m/M) cos^2  θ)(1+(m/M) sin^2  θ)−(−(m/M) sin θ cos θ)^2 ))  ⇒f=((mg sin θ (1+(m/M)))/((7/2)+(m/M)((5/2) sin^2  θ+1)))    ⇒N=((mg cos θ ((7/2)−(m/M) cos^2  θ)−mg sin θ (−(m/M) sin θ cos θ))/(((7/2)+(m/M) cos^2  θ)(1+(m/M) sin^2  θ)−(−(m/M) sin θ cos θ)^2 ))  ⇒N=((mg cos θ((7/2)+(m/M)))/((7/2)+(m/M)((5/2) sin^2  θ+1)))  f≤μN  ((mg sin θ (1+(m/M)))/((7/2)+(m/M)((5/2) sin^2  θ+1)))≤μ((mg cos θ((7/2)+(m/M)))/((7/2)+(m/M)((5/2) sin^2  θ+1)))  ⇒μ≥((1+(m/M))/((7/2)+(m/M)))×tan θ  ⇒α=((5f)/(2mr))=((5g)/(2r))×((sin θ(1+(m/M)))/((7/2)+(m/M)((5/2) sin^2  θ+1)))  ⇒(v/r)×(dv/ds)=((5g)/(2r))×((sin θ(1+(m/M)))/((7/2)+(m/M)((5/2) sin^2  θ+1)))  ⇒vdv=(((5/2)g sin θ(1+(m/M)))/((7/2)+(m/M)((5/2) sin^2  θ+1)))ds=λds  with λ=(((5/2)g sin θ(1+(m/M)))/((7/2)+(m/M)((5/2) sin^2  θ+1)))  =((5g sin θ)/(((5M+2M+2m)/(M+m))+((5m(1−cos^2  θ))/(M+m))))  =((g sin θ)/((7/5)−((m cos^2  θ)/(M+m))))  ⇒(v^2 /2)=λs  ⇒v=(√(2λs))=(√((2gs sin θ)/((7/5)−((m cos^2  θ)/(M+m)))))  when the ball is about to touch the  ground, s=(h/(sin θ))−(r/(tan (θ/2)))  ⇒v=(√((2g(h−2r cos^2  (θ/2)) )/((7/5)−((m cos^2  θ)/(M+m)))))

v=dsdt=ωrA=rαα=dωdt=dωds×dsdt=vr×dvdsI=2mr25Iα=rfα=rfI=5f2mrMa=fcosθ+Nsinθa=fcosθ+NsinθMf=mgsinθ+macosθmrα72f=mgsinθ+macosθN=mgcosθmasinθ72f=mgsinθ+mM(fcosθ+Nsinθ)cosθ(72+mMcos2θ)fmMsinθcosθN=mgsinθN=mgcosθmM(fcosθ+Nsinθ)sinθmMsinθcosθf+(1+mMsin2θ)N=mgcosθf=mgsinθ(1+mMsin2θ)mgcosθ(mMsinθcosθ)(72+mMcos2θ)(1+mMsin2θ)(mMsinθcosθ)2f=mgsinθ(1+mM)72+mM(52sin2θ+1)N=mgcosθ(72mMcos2θ)mgsinθ(mMsinθcosθ)(72+mMcos2θ)(1+mMsin2θ)(mMsinθcosθ)2N=mgcosθ(72+mM)72+mM(52sin2θ+1)fμNmgsinθ(1+mM)72+mM(52sin2θ+1)μmgcosθ(72+mM)72+mM(52sin2θ+1)μ1+mM72+mM×tanθα=5f2mr=5g2r×sinθ(1+mM)72+mM(52sin2θ+1)vr×dvds=5g2r×sinθ(1+mM)72+mM(52sin2θ+1)vdv=52gsinθ(1+mM)72+mM(52sin2θ+1)ds=λdswithλ=52gsinθ(1+mM)72+mM(52sin2θ+1)=5gsinθ5M+2M+2mM+m+5m(1cos2θ)M+m=gsinθ75mcos2θM+mv22=λsv=2λs=2gssinθ75mcos2θM+mwhentheballisabouttotouchtheground,s=hsinθrtanθ2v=2g(h2rcos2θ2)75mcos2θM+m

Commented by ajfour last updated on 18/Oct/19

Commented by ajfour last updated on 18/Oct/19

    s=(h/(sin θ))−rtan (θ/2)

s=hsinθrtanθ2

Commented by ajfour last updated on 18/Oct/19

mgssin θ=((MV^( 2) )/2)+(1/2)(((2mr^2 )/5))(v^2 /r^2 )             +(m/2)[(vcos θ−V)^2 +v^2 sin^2 θ]   &     mvcos θ=(M+m)V  ⇒ V=((mvcos θ)/(M+m))  &    vcos θ−V = ((Mvcos θ)/(M+m))  substituting in first eq.    mgssin θ=mv^2 ((1/5)+((sin^2 θ)/2))        +(M/2)(((mvcos θ)/(M+m)))^2 +(m/2)(((Mvcos θ)/(M+m)))^2   ⇒ mgssin θ=mv^2 ((1/5)+((sin^2 θ)/2))                                +((Mmv^2 cos^2 θ)/(2(M+m)))  ⇒  v^2 =((gssin θ)/((1/5)+((sin^2 θ)/2)+((Mcos^2 θ)/(2(M+m)))))     v = (√((gssin θ)/((1/5)+((sin^2 θ)/2)+((Mcos^2 θ)/(2(M+m))))))         v=(√((2gssin θ)/((7/5)−((mcos^2 θ)/(M+m)))))   And  with s=(h/(sin θ))−rtan (θ/2)    v=(√((g(h−rtan (θ/2)sin θ))/((1/5)+((sin^2 θ)/2)+((Mcos^2 θ)/(2(M+m)))))) .  vcos θ−V = ((Mvcos θ)/(M+m))    ⇒ v_(actual) ^2 =(((Mvcos θ)/(M+m)))^2 +(vsin θ)^2       v_(actual) =v(√(((M/(M+m)))^2 cos^2 θ+sin^2 θ))    this is speed of sphere    relative to wedge..

mgssinθ=MV22+12(2mr25)v2r2+m2[(vcosθV)2+v2sin2θ]&mvcosθ=(M+m)VV=mvcosθM+m&vcosθV=MvcosθM+msubstitutinginfirsteq.mgssinθ=mv2(15+sin2θ2)+M2(mvcosθM+m)2+m2(MvcosθM+m)2mgssinθ=mv2(15+sin2θ2)+Mmv2cos2θ2(M+m)v2=gssinθ15+sin2θ2+Mcos2θ2(M+m)v=gssinθ15+sin2θ2+Mcos2θ2(M+m)v=2gssinθ75mcos2θM+mAndwiths=hsinθrtanθ2v=g(hrtanθ2sinθ)15+sin2θ2+Mcos2θ2(M+m).vcosθV=MvcosθM+mvactual2=(MvcosθM+m)2+(vsinθ)2vactual=v(MM+m)2cos2θ+sin2θthisisspeedofsphererelativetowedge..

Commented by mr W last updated on 17/Oct/19

your method is more effective, very  nice! but i didn′t find where my error  is.

yourmethodismoreeffective,verynice!butididntfindwheremyerroris.

Commented by ajfour last updated on 18/Oct/19

Nsin θ−fcos θ=Ma         ...(i)  N+masin θ=mgcos θ      ...(ii)  mgsin θ+macos θ=f+mαr    ...(iii)  rf=(2/5)mr^2 α                ....(iv)  ⇒ masin^2 θ+Ma+fcos θ             =mgsin θcos θ  ⇒ (M+msin^2 θ)(((f−mgsin θ+mαr)/(mcos θ)))         +fcos θ=mgsin θcos θ  f=((mgsin θcos θ+(((M+msin^2 θ)(gsin θ−αr))/(cos θ)))/(cos θ+((M+msin^2 θ)/(mcos θ))))     =((m[(M+m)gsin θ−αr(M+msin^2 θ)])/(M+m))    = (2/5)mrα        [from (iv)]   ⇒  αr[M+msin^2 θ+(2/5)(M+m)]            = (M+m)gsin θ  ⇒  αr = ((gsin θ)/((7/5)−((mcos^2 θ)/(M+m))))       ((vdv)/ds)=αr  ⇒ v=(√(2αrs))  ⇒  v=(√((2gssin θ)/((7/5)−((mcos^2 θ)/(M+m))))) .

Nsinθfcosθ=Ma...(i)N+masinθ=mgcosθ...(ii)mgsinθ+macosθ=f+mαr...(iii)rf=25mr2α....(iv)masin2θ+Ma+fcosθ=mgsinθcosθ(M+msin2θ)(fmgsinθ+mαrmcosθ)+fcosθ=mgsinθcosθf=mgsinθcosθ+(M+msin2θ)(gsinθαr)cosθcosθ+M+msin2θmcosθ=m[(M+m)gsinθαr(M+msin2θ)]M+m=25mrα[from(iv)]αr[M+msin2θ+25(M+m)]=(M+m)gsinθαr=gsinθ75mcos2θM+mvdvds=αrv=2αrsv=2gssinθ75mcos2θM+m.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com