Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 71423 by ajfour last updated on 15/Oct/19

Commented by ajfour last updated on 15/Oct/19

MjS Sir...

$${MjS}\:{Sir}... \\ $$

Commented by mr W last updated on 15/Oct/19

such that incircle exists,  a+c=b+d

$${such}\:{that}\:{incircle}\:{exists}, \\ $$$${a}+{c}={b}+{d} \\ $$

Commented by MJS last updated on 15/Oct/19

I′ll try...

$$\mathrm{I}'\mathrm{ll}\:\mathrm{try}... \\ $$

Commented by ajfour last updated on 15/Oct/19

granted, d=a+c−b  find r_(max)  in terms of a,b,c   dear Sir.

$${granted},\:{d}={a}+{c}−{b} \\ $$$${find}\:{r}_{{max}} \:{in}\:{terms}\:{of}\:{a},{b},{c}\: \\ $$$${dear}\:{Sir}. \\ $$

Commented by ajfour last updated on 15/Oct/19

Commented by ajfour last updated on 16/Oct/19

 let  φ=∠AEB  Area of quad=(r/2)(a+b+c+d)      = r(a+c)         [As a+c=b+d]  =(1/2)absin 2θ+(1/2)c(a+c−b)sin 2φ                                               ......(i)                (φ=∠AEB)   AB^2 = a^2 +b^2 −2abcos 2θ    = c^2 +(a+c−b)^2 −2c(a+c−b)cos 2φ  differentiating we get   absin 2θ=c(a+c−b)(sin 2φ)(dφ/dθ)  and differentiating (i)    (a+c)(dr/dθ)=abcos 2θ        +c(a+c−b)(cos 2φ)(dφ/dθ)    ⇒   for  (dr/dθ)=0    abcos 2θ=−c(a+c−b)cos 2φ                             ×((absin 2θ)/(c(a+c−b)sin 2φ))  ⇒   tan 2φ=−tan 2θ  hence       (a+c)r=(1/2)[ab+c(a+c−b)]sin 2θ  &   AB^2 = a^2 +b^2 −2abcos 2θ    = c^2 +(a+c−b)^2 +2c(a+c−b)cos 2θ  ⇒  cos 2θ=((a^2 +b^2 −c^2 −(a+c−b)^2 )/(2[ab+c(a+c−b)]))   r_(max) = (([ab+c(a+c−b)]sin 2θ)/(2(a+c)))   r_(max) =(([ab+c(a+c−b)])/(2(a+c)))(√(1−{((a^2 +b^2 −c^2 −(a+c−b)^2 )/(2[ab+c(a+c−b)]))}^2 )) .

$$\:{let}\:\:\phi=\angle{AEB} \\ $$$${Area}\:{of}\:{quad}=\frac{{r}}{\mathrm{2}}\left({a}+{b}+{c}+{d}\right) \\ $$$$\:\:\:\:=\:{r}\left({a}+{c}\right)\:\:\:\:\:\:\:\:\:\left[{As}\:{a}+{c}={b}+{d}\right] \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}{ab}\mathrm{sin}\:\mathrm{2}\theta+\frac{\mathrm{1}}{\mathrm{2}}{c}\left({a}+{c}−{b}\right)\mathrm{sin}\:\mathrm{2}\phi \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:......\left({i}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left(\phi=\angle{AEB}\right) \\ $$$$\:{AB}^{\mathrm{2}} =\:{a}^{\mathrm{2}} +{b}^{\mathrm{2}} −\mathrm{2}{ab}\mathrm{cos}\:\mathrm{2}\theta \\ $$$$\:\:=\:{c}^{\mathrm{2}} +\left({a}+{c}−{b}\right)^{\mathrm{2}} −\mathrm{2}{c}\left({a}+{c}−{b}\right)\mathrm{cos}\:\mathrm{2}\phi \\ $$$${differentiating}\:{we}\:{get} \\ $$$$\:{ab}\mathrm{sin}\:\mathrm{2}\theta={c}\left({a}+{c}−{b}\right)\left(\mathrm{sin}\:\mathrm{2}\phi\right)\frac{{d}\phi}{{d}\theta} \\ $$$${and}\:{differentiating}\:\left({i}\right) \\ $$$$\:\:\left({a}+{c}\right)\frac{{dr}}{{d}\theta}={ab}\mathrm{cos}\:\mathrm{2}\theta \\ $$$$\:\:\:\:\:\:+{c}\left({a}+{c}−{b}\right)\left(\mathrm{cos}\:\mathrm{2}\phi\right)\frac{{d}\phi}{{d}\theta}\:\:\:\:\Rightarrow \\ $$$$\:{for}\:\:\frac{{dr}}{{d}\theta}=\mathrm{0} \\ $$$$\:\:{ab}\mathrm{cos}\:\mathrm{2}\theta=−{c}\left({a}+{c}−{b}\right)\mathrm{cos}\:\mathrm{2}\phi \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:×\frac{{ab}\mathrm{sin}\:\mathrm{2}\theta}{{c}\left({a}+{c}−{b}\right)\mathrm{sin}\:\mathrm{2}\phi} \\ $$$$\Rightarrow\:\:\:\mathrm{tan}\:\mathrm{2}\phi=−\mathrm{tan}\:\mathrm{2}\theta \\ $$$${hence}\:\:\: \\ $$$$\:\:\left({a}+{c}\right){r}=\frac{\mathrm{1}}{\mathrm{2}}\left[{ab}+{c}\left({a}+{c}−{b}\right)\right]\mathrm{sin}\:\mathrm{2}\theta \\ $$$$\& \\ $$$$\:{AB}^{\mathrm{2}} =\:{a}^{\mathrm{2}} +{b}^{\mathrm{2}} −\mathrm{2}{ab}\mathrm{cos}\:\mathrm{2}\theta \\ $$$$\:\:=\:{c}^{\mathrm{2}} +\left({a}+{c}−{b}\right)^{\mathrm{2}} +\mathrm{2}{c}\left({a}+{c}−{b}\right)\mathrm{cos}\:\mathrm{2}\theta \\ $$$$\Rightarrow\:\:\mathrm{cos}\:\mathrm{2}\theta=\frac{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} −{c}^{\mathrm{2}} −\left({a}+{c}−{b}\right)^{\mathrm{2}} }{\mathrm{2}\left[{ab}+{c}\left({a}+{c}−{b}\right)\right]} \\ $$$$\:{r}_{{max}} =\:\frac{\left[{ab}+{c}\left({a}+{c}−{b}\right)\right]\mathrm{sin}\:\mathrm{2}\theta}{\mathrm{2}\left({a}+{c}\right)} \\ $$$$\:{r}_{{max}} =\frac{\left[{ab}+{c}\left({a}+{c}−{b}\right)\right]}{\mathrm{2}\left({a}+{c}\right)}\sqrt{\mathrm{1}−\left\{\frac{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} −{c}^{\mathrm{2}} −\left({a}+{c}−{b}\right)^{\mathrm{2}} }{\mathrm{2}\left[{ab}+{c}\left({a}+{c}−{b}\right)\right]}\right\}^{\mathrm{2}} }\:. \\ $$$$ \\ $$

Commented by ajfour last updated on 16/Oct/19

say if a=b=c=d   r_(max) =(a/2) ∙

$${say}\:{if}\:{a}={b}={c}={d} \\ $$$$\:{r}_{{max}} =\frac{{a}}{\mathrm{2}}\:\centerdot \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com