Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 71548 by Cmr 237 last updated on 17/Oct/19

let f:U⊂R^n →R^p  be an application  where U is an open set  prove that ∀x∈U,∃h∈R^n such as  x+h∈U

$$\mathrm{let}\:\mathrm{f}:\boldsymbol{\mathrm{U}}\subset\mathbb{R}^{\mathrm{n}} \rightarrow\mathbb{R}^{\mathrm{p}} \:\mathrm{be}\:\mathrm{an}\:\mathrm{application} \\ $$$$\mathrm{where}\:\boldsymbol{\mathrm{U}}\:\mathrm{is}\:\mathrm{an}\:\mathrm{open}\:\mathrm{set} \\ $$$$\mathrm{prove}\:\mathrm{that}\:\forall\mathrm{x}\in\boldsymbol{{U}},\exists\mathrm{h}\in\mathbb{R}^{\mathrm{n}} \mathrm{such}\:\mathrm{as} \\ $$$$\mathrm{x}+\mathrm{h}\in\boldsymbol{{U}} \\ $$

Answered by mind is power last updated on 17/Oct/19

U is open ⇒∃ ε>0 such that B(x,ε)⊂U  we have B(x,ε) is a convex   (1+(ε/2))x∈B(x,ε)⊂U⇒(1+(ε/2))x∈U

$$\mathrm{U}\:\mathrm{is}\:\mathrm{open}\:\Rightarrow\exists\:\varepsilon>\mathrm{0}\:\mathrm{such}\:\mathrm{that}\:\mathrm{B}\left(\mathrm{x},\varepsilon\right)\subset\mathrm{U} \\ $$$$\mathrm{we}\:\mathrm{have}\:\mathrm{B}\left(\mathrm{x},\varepsilon\right)\:\mathrm{is}\:\mathrm{a}\:\mathrm{convex}\: \\ $$$$\left(\mathrm{1}+\frac{\varepsilon}{\mathrm{2}}\right)\mathrm{x}\in\mathrm{B}\left(\mathrm{x},\varepsilon\right)\subset\mathrm{U}\Rightarrow\left(\mathrm{1}+\frac{\varepsilon}{\mathrm{2}}\right)\mathrm{x}\in\mathrm{U} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com