Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 7157 by Tawakalitu. last updated on 13/Aug/16

If a and b are positive numbers  what is the value of   ∫_0 ^∞  ((e^(ax)  − e^(bx) )/((1 + e^(ax) )(1 + e^(bx) ))) dx

$${If}\:{a}\:{and}\:{b}\:{are}\:{positive}\:{numbers} \\ $$$${what}\:{is}\:{the}\:{value}\:{of}\: \\ $$$$\int_{\mathrm{0}} ^{\infty} \:\frac{{e}^{{ax}} \:−\:{e}^{{bx}} }{\left(\mathrm{1}\:+\:{e}^{{ax}} \right)\left(\mathrm{1}\:+\:{e}^{{bx}} \right)}\:{dx}\: \\ $$

Answered by Yozzia last updated on 14/Aug/16

(1/(1+e^(bx) ))−(1/(1+e^(ax) ))=((e^(ax) −e^(bx) )/((1+e^(ax) )(1+e^(bx) )))   (a,b>0)  I=∫_0 ^∞ ((e^(ax) −e^(bx) )/((1+e^(ax) )(1+e^(bx) )))dx=∫_0 ^∞ [(1/(1+e^(bx) ))−(1/(1+e^(ax) ))]dx  I=lim_(m→∞) [∫_0 ^m (1/(1+e^(bx) ))dx−∫_0 ^m (1/(1+e^(ax) ))dx]  u=e^(bx) ⇒du=be^(bx) dx⇒dx=(1/(bu))du  ∫(1/(bu(1+u)))du=(1/b)∫((1/u)−(1/(1+u)))du  =(1/b)ln(u/(1+u))=(1/b)ln(1/(1+u^(−1) ))=(1/b)ln(1/(1+e^(−bx) ))  ∴I=lim_(m→∞) [(1/b)ln((1/(1+e^(−bx) )))−(1/a)ln((1/(1+e^(−ax) )))]_0 ^m   I=lim_(m→∞) [(1/b)ln(1/(1+e^(−bm) ))−(1/a)ln(1/(1+e^(−am) ))−(1/b)ln(1/(1+1))+(1/a)ln(1/(1+1))]  Since a,b>0, I=(1/b)ln(1/(1+e^(−∞) ))−(1/a)ln(1/(1+e^(−∞) ))+(ln(1/2))((1/a)−(1/b))  I=(1/b)ln(1/(1+0))−(1/a)ln(1/(1+0))+(((a−b)ln2)/(ab))  ∫_0 ^∞ ((e^(ax) −e^(bx) )/((1+e^(ax) )(1+e^(bx) )))dx=(((a−b)ln2)/(ab))

$$\frac{\mathrm{1}}{\mathrm{1}+{e}^{{bx}} }−\frac{\mathrm{1}}{\mathrm{1}+{e}^{{ax}} }=\frac{{e}^{{ax}} −{e}^{{bx}} }{\left(\mathrm{1}+{e}^{{ax}} \right)\left(\mathrm{1}+{e}^{{bx}} \right)}\:\:\:\left({a},{b}>\mathrm{0}\right) \\ $$$${I}=\int_{\mathrm{0}} ^{\infty} \frac{{e}^{{ax}} −{e}^{{bx}} }{\left(\mathrm{1}+{e}^{{ax}} \right)\left(\mathrm{1}+{e}^{{bx}} \right)}{dx}=\int_{\mathrm{0}} ^{\infty} \left[\frac{\mathrm{1}}{\mathrm{1}+{e}^{{bx}} }−\frac{\mathrm{1}}{\mathrm{1}+{e}^{{ax}} }\right]{dx} \\ $$$${I}=\underset{{m}\rightarrow\infty} {\mathrm{lim}}\left[\int_{\mathrm{0}} ^{{m}} \frac{\mathrm{1}}{\mathrm{1}+{e}^{{bx}} }{dx}−\int_{\mathrm{0}} ^{{m}} \frac{\mathrm{1}}{\mathrm{1}+{e}^{{ax}} }{dx}\right] \\ $$$${u}={e}^{{bx}} \Rightarrow{du}={be}^{{bx}} {dx}\Rightarrow{dx}=\frac{\mathrm{1}}{{bu}}{du} \\ $$$$\int\frac{\mathrm{1}}{{bu}\left(\mathrm{1}+{u}\right)}{du}=\frac{\mathrm{1}}{{b}}\int\left(\frac{\mathrm{1}}{{u}}−\frac{\mathrm{1}}{\mathrm{1}+{u}}\right){du} \\ $$$$=\frac{\mathrm{1}}{{b}}{ln}\frac{{u}}{\mathrm{1}+{u}}=\frac{\mathrm{1}}{{b}}{ln}\frac{\mathrm{1}}{\mathrm{1}+{u}^{−\mathrm{1}} }=\frac{\mathrm{1}}{{b}}{ln}\frac{\mathrm{1}}{\mathrm{1}+{e}^{−{bx}} } \\ $$$$\therefore{I}=\underset{{m}\rightarrow\infty} {\mathrm{lim}}\left[\frac{\mathrm{1}}{{b}}{ln}\left(\frac{\mathrm{1}}{\mathrm{1}+{e}^{−{bx}} }\right)−\frac{\mathrm{1}}{{a}}{ln}\left(\frac{\mathrm{1}}{\mathrm{1}+{e}^{−{ax}} }\right)\right]_{\mathrm{0}} ^{{m}} \\ $$$${I}=\underset{{m}\rightarrow\infty} {\mathrm{lim}}\left[\frac{\mathrm{1}}{{b}}{ln}\frac{\mathrm{1}}{\mathrm{1}+{e}^{−{bm}} }−\frac{\mathrm{1}}{{a}}{ln}\frac{\mathrm{1}}{\mathrm{1}+{e}^{−{am}} }−\frac{\mathrm{1}}{{b}}{ln}\frac{\mathrm{1}}{\mathrm{1}+\mathrm{1}}+\frac{\mathrm{1}}{{a}}{ln}\frac{\mathrm{1}}{\mathrm{1}+\mathrm{1}}\right] \\ $$$${Since}\:{a},{b}>\mathrm{0},\:{I}=\frac{\mathrm{1}}{{b}}{ln}\frac{\mathrm{1}}{\mathrm{1}+{e}^{−\infty} }−\frac{\mathrm{1}}{{a}}{ln}\frac{\mathrm{1}}{\mathrm{1}+{e}^{−\infty} }+\left({ln}\frac{\mathrm{1}}{\mathrm{2}}\right)\left(\frac{\mathrm{1}}{{a}}−\frac{\mathrm{1}}{{b}}\right) \\ $$$${I}=\frac{\mathrm{1}}{{b}}{ln}\frac{\mathrm{1}}{\mathrm{1}+\mathrm{0}}−\frac{\mathrm{1}}{{a}}{ln}\frac{\mathrm{1}}{\mathrm{1}+\mathrm{0}}+\frac{\left({a}−{b}\right){ln}\mathrm{2}}{{ab}} \\ $$$$\int_{\mathrm{0}} ^{\infty} \frac{{e}^{{ax}} −{e}^{{bx}} }{\left(\mathrm{1}+{e}^{{ax}} \right)\left(\mathrm{1}+{e}^{{bx}} \right)}{dx}=\frac{\left({a}−{b}\right){ln}\mathrm{2}}{{ab}} \\ $$$$ \\ $$

Commented by Tawakalitu. last updated on 14/Aug/16

Thanks so much sir

$${Thanks}\:{so}\:{much}\:{sir} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com