Question and Answers Forum

All Questions      Topic List

Mechanics Questions

Previous in All Question      Next in All Question      

Previous in Mechanics      Next in Mechanics      

Question Number 71611 by ajfour last updated on 17/Oct/19

Commented by ajfour last updated on 17/Oct/19

Find time it takes the cylinder  to unwind and slide and hit the  ground.

$${Find}\:{time}\:{it}\:{takes}\:{the}\:{cylinder} \\ $$$${to}\:{unwind}\:{and}\:{slide}\:{and}\:{hit}\:{the} \\ $$$${ground}. \\ $$

Commented by ajfour last updated on 18/Oct/19

Answered by Tanmay chaudhury last updated on 18/Oct/19

mg−Tcosα=ma  Tsinα=N  T.r=I((a/r))→T=((Ia)/r^2 )  mg−((Iacosα)/r^2 )=ma  a(((Icosα)/r^2 )+m)=mg  a=((mg)/(((Icosα)/r^2 )+m))→h=(1/2)at^2 →t=(√((2h)/a))  t=(√(((2h)/(mg))×(m+((Icosα)/r^2 )) ))  t=(√(((2h)/(mg))×(m+((mr^2 cosα)/(2r^2 ))))) [I=((mr^2 )/2)]  t=(√(((2h)/(mg))×m(1+((r^2 cosα)/(2r^2 )))))   t=(√(((2h)/g)×(1+((cosα)/2))))     pls check is it correct...

$${mg}−{Tcos}\alpha={ma} \\ $$$${Tsin}\alpha={N} \\ $$$${T}.{r}={I}\left(\frac{{a}}{{r}}\right)\rightarrow{T}=\frac{{Ia}}{{r}^{\mathrm{2}} } \\ $$$${mg}−\frac{{Iacos}\alpha}{{r}^{\mathrm{2}} }={ma} \\ $$$${a}\left(\frac{{Icos}\alpha}{{r}^{\mathrm{2}} }+{m}\right)={mg} \\ $$$${a}=\frac{{mg}}{\frac{{Icos}\alpha}{{r}^{\mathrm{2}} }+{m}}\rightarrow{h}=\frac{\mathrm{1}}{\mathrm{2}}{at}^{\mathrm{2}} \rightarrow{t}=\sqrt{\frac{\mathrm{2}{h}}{{a}}} \\ $$$${t}=\sqrt{\frac{\mathrm{2}{h}}{{mg}}×\left({m}+\frac{{Icos}\alpha}{{r}^{\mathrm{2}} }\right)\:} \\ $$$${t}=\sqrt{\frac{\mathrm{2}{h}}{{mg}}×\left({m}+\frac{{mr}^{\mathrm{2}} {cos}\alpha}{\mathrm{2}{r}^{\mathrm{2}} }\right)}\:\left[{I}=\frac{{mr}^{\mathrm{2}} }{\mathrm{2}}\right] \\ $$$${t}=\sqrt{\frac{\mathrm{2}{h}}{{mg}}×{m}\left(\mathrm{1}+\frac{{r}^{\mathrm{2}} {cos}\alpha}{\mathrm{2}{r}^{\mathrm{2}} }\right)}\: \\ $$$${t}=\sqrt{\frac{\mathrm{2}{h}}{{g}}×\left(\mathrm{1}+\frac{{cos}\alpha}{\mathrm{2}}\right)}\: \\ $$$$ \\ $$$$\boldsymbol{{pls}}\:{c}\boldsymbol{{heck}}\:\boldsymbol{{is}}\:\boldsymbol{{it}}\:\boldsymbol{{correct}}... \\ $$$$ \\ $$

Commented by Tanmay chaudhury last updated on 18/Oct/19

do friction present...pls clarify...because i have  ignored friction

$${do}\:{friction}\:{present}...{pls}\:{clarify}...{because}\:{i}\:{have} \\ $$$${ignored}\:{friction} \\ $$

Commented by ajfour last updated on 19/Oct/19

frictionless, yes, but α goes  changing sir.

$${frictionless},\:{yes},\:{but}\:\alpha\:{goes} \\ $$$${changing}\:{sir}. \\ $$

Answered by mr W last updated on 19/Oct/19

Commented by mr W last updated on 19/Oct/19

i use β to replace α in the question  AC=h+(r/(tan (β/2)))=s+(r/(tan (θ/2)))=k  tan (θ/2)=(r/(k−s))  cos θ=((1−((r/(k−s)))^2 )/(1+((r/(k−s)))^2 ))=1−((2r^2 )/((k−s)^2 +r^2 ))  mg−T cos θ=ma  Tr=Iα  I=((mr^2 )/2)  α=(a/r)  Tr=((mr^2 )/2)×(a/r)  T=((ma)/2)  mg−((ma cos θ)/2)=ma  ⇒a=((2g)/(2+cos θ))=((2g)/(3−((2r^2 )/((k−s)^2 +r^2 ))))=((2g[(k−s)^2 +r^2 ])/(3(k−s)^2 +r^2 ))  ⇒−v(dv/ds)=2g×(((k−s)^2 +r^2 )/(3(k−s)^2 +r^2 ))  ⇒∫_0 ^v vdv=−2g∫_h ^s (((k−s)^2 +r^2 )/(3(k−s)^2 +r^2 ))ds  ⇒(v^2 /2)=2g∫_h ^s (((k−s)^2 +r^2 )/(3(k−s)^2 +r^2 ))d(k−s)  ⇒(v^2 /(4g))=∫_(k−h) ^(k−s) ((u^2 +r^2 )/(3u^2 +r^2 ))du  ⇒(v^2 /(4g))=(1/3)[((2r)/(√3)) tan^(−1) (((√3)u)/r)+u]_(k−h) ^(k−s)   ⇒(v^2 /(4g))=(1/3)[((2r)/(√3))(tan^(−1) ((√3)/(tan (θ/2)))−tan^(−1) ((√3)/(tan (β/2))))+(r/(tan (θ/2)))−(r/(tan (β/2)))]  ⇒((3v^2 )/(4gr))=(2/(√3))(tan^(−1) ((√3)/(tan (θ/2)))−tan^(−1) ((√3)/(tan (β/2))))+(1/(tan (θ/2)))−(1/(tan (β/2)))  ⇒v=((2(√(gr)))/(√3))(√((2/(√3))(tan^(−1) ((√3)/(tan (θ/2)))−tan^(−1) ((√3)/(tan (β/2))))+(1/(tan (θ/2)))−(1/(tan (β/2)))))  ⇒(ds/dt)=((2(√(gr)))/(√3))(√((2/(√3))(tan^(−1) (((√3)(k−s))/r)−tan^(−1) ((√3)/(tan (β/2))))+((k−s)/r)−(1/(tan (β/2)))))  ⇒((2(√(gr)))/(√3))∫_0 ^t dt=∫_h ^r (ds/(√((2/(√3))(tan^(−1) (((√3)(k−s))/r)−tan^(−1) ((√3)/(tan (β/2))))+((k−s)/r)−(1/(tan (β/2))))))  ⇒t=((√3)/(2(√(gr))))∫_h ^r (ds/(√((2/(√3))(tan^(−1) (((√3)(k−s))/r)−tan^(−1) ((√3)/(tan (β/2))))+((k−s)/r)−(1/(tan (β/2))))))  ......

$${i}\:{use}\:\beta\:{to}\:{replace}\:\alpha\:{in}\:{the}\:{question} \\ $$$${AC}={h}+\frac{{r}}{\mathrm{tan}\:\frac{\beta}{\mathrm{2}}}={s}+\frac{{r}}{\mathrm{tan}\:\frac{\theta}{\mathrm{2}}}={k} \\ $$$$\mathrm{tan}\:\frac{\theta}{\mathrm{2}}=\frac{{r}}{{k}−{s}} \\ $$$$\mathrm{cos}\:\theta=\frac{\mathrm{1}−\left(\frac{{r}}{{k}−{s}}\right)^{\mathrm{2}} }{\mathrm{1}+\left(\frac{{r}}{{k}−{s}}\right)^{\mathrm{2}} }=\mathrm{1}−\frac{\mathrm{2}{r}^{\mathrm{2}} }{\left({k}−{s}\right)^{\mathrm{2}} +{r}^{\mathrm{2}} } \\ $$$${mg}−{T}\:\mathrm{cos}\:\theta={ma} \\ $$$${Tr}={I}\alpha \\ $$$${I}=\frac{{mr}^{\mathrm{2}} }{\mathrm{2}} \\ $$$$\alpha=\frac{{a}}{{r}} \\ $$$${Tr}=\frac{{mr}^{\mathrm{2}} }{\mathrm{2}}×\frac{{a}}{{r}} \\ $$$${T}=\frac{{ma}}{\mathrm{2}} \\ $$$${mg}−\frac{{ma}\:\mathrm{cos}\:\theta}{\mathrm{2}}={ma} \\ $$$$\Rightarrow{a}=\frac{\mathrm{2}{g}}{\mathrm{2}+\mathrm{cos}\:\theta}=\frac{\mathrm{2}{g}}{\mathrm{3}−\frac{\mathrm{2}{r}^{\mathrm{2}} }{\left({k}−{s}\right)^{\mathrm{2}} +{r}^{\mathrm{2}} }}=\frac{\mathrm{2}{g}\left[\left({k}−{s}\right)^{\mathrm{2}} +{r}^{\mathrm{2}} \right]}{\mathrm{3}\left({k}−{s}\right)^{\mathrm{2}} +{r}^{\mathrm{2}} } \\ $$$$\Rightarrow−{v}\frac{{dv}}{{ds}}=\mathrm{2}{g}×\frac{\left({k}−{s}\right)^{\mathrm{2}} +{r}^{\mathrm{2}} }{\mathrm{3}\left({k}−{s}\right)^{\mathrm{2}} +{r}^{\mathrm{2}} } \\ $$$$\Rightarrow\int_{\mathrm{0}} ^{{v}} {vdv}=−\mathrm{2}{g}\int_{{h}} ^{{s}} \frac{\left({k}−{s}\right)^{\mathrm{2}} +{r}^{\mathrm{2}} }{\mathrm{3}\left({k}−{s}\right)^{\mathrm{2}} +{r}^{\mathrm{2}} }{ds} \\ $$$$\Rightarrow\frac{{v}^{\mathrm{2}} }{\mathrm{2}}=\mathrm{2}{g}\int_{{h}} ^{{s}} \frac{\left({k}−{s}\right)^{\mathrm{2}} +{r}^{\mathrm{2}} }{\mathrm{3}\left({k}−{s}\right)^{\mathrm{2}} +{r}^{\mathrm{2}} }{d}\left({k}−{s}\right) \\ $$$$\Rightarrow\frac{{v}^{\mathrm{2}} }{\mathrm{4}{g}}=\int_{{k}−{h}} ^{{k}−{s}} \frac{{u}^{\mathrm{2}} +{r}^{\mathrm{2}} }{\mathrm{3}{u}^{\mathrm{2}} +{r}^{\mathrm{2}} }{du} \\ $$$$\Rightarrow\frac{{v}^{\mathrm{2}} }{\mathrm{4}{g}}=\frac{\mathrm{1}}{\mathrm{3}}\left[\frac{\mathrm{2}{r}}{\sqrt{\mathrm{3}}}\:\mathrm{tan}^{−\mathrm{1}} \frac{\sqrt{\mathrm{3}}{u}}{{r}}+{u}\right]_{{k}−{h}} ^{{k}−{s}} \\ $$$$\Rightarrow\frac{{v}^{\mathrm{2}} }{\mathrm{4}{g}}=\frac{\mathrm{1}}{\mathrm{3}}\left[\frac{\mathrm{2}{r}}{\sqrt{\mathrm{3}}}\left(\mathrm{tan}^{−\mathrm{1}} \frac{\sqrt{\mathrm{3}}}{\mathrm{tan}\:\frac{\theta}{\mathrm{2}}}−\mathrm{tan}^{−\mathrm{1}} \frac{\sqrt{\mathrm{3}}}{\mathrm{tan}\:\frac{\beta}{\mathrm{2}}}\right)+\frac{{r}}{\mathrm{tan}\:\frac{\theta}{\mathrm{2}}}−\frac{{r}}{\mathrm{tan}\:\frac{\beta}{\mathrm{2}}}\right] \\ $$$$\Rightarrow\frac{\mathrm{3}{v}^{\mathrm{2}} }{\mathrm{4}{gr}}=\frac{\mathrm{2}}{\sqrt{\mathrm{3}}}\left(\mathrm{tan}^{−\mathrm{1}} \frac{\sqrt{\mathrm{3}}}{\mathrm{tan}\:\frac{\theta}{\mathrm{2}}}−\mathrm{tan}^{−\mathrm{1}} \frac{\sqrt{\mathrm{3}}}{\mathrm{tan}\:\frac{\beta}{\mathrm{2}}}\right)+\frac{\mathrm{1}}{\mathrm{tan}\:\frac{\theta}{\mathrm{2}}}−\frac{\mathrm{1}}{\mathrm{tan}\:\frac{\beta}{\mathrm{2}}} \\ $$$$\Rightarrow{v}=\frac{\mathrm{2}\sqrt{{gr}}}{\sqrt{\mathrm{3}}}\sqrt{\frac{\mathrm{2}}{\sqrt{\mathrm{3}}}\left(\mathrm{tan}^{−\mathrm{1}} \frac{\sqrt{\mathrm{3}}}{\mathrm{tan}\:\frac{\theta}{\mathrm{2}}}−\mathrm{tan}^{−\mathrm{1}} \frac{\sqrt{\mathrm{3}}}{\mathrm{tan}\:\frac{\beta}{\mathrm{2}}}\right)+\frac{\mathrm{1}}{\mathrm{tan}\:\frac{\theta}{\mathrm{2}}}−\frac{\mathrm{1}}{\mathrm{tan}\:\frac{\beta}{\mathrm{2}}}} \\ $$$$\Rightarrow\frac{{ds}}{{dt}}=\frac{\mathrm{2}\sqrt{{gr}}}{\sqrt{\mathrm{3}}}\sqrt{\frac{\mathrm{2}}{\sqrt{\mathrm{3}}}\left(\mathrm{tan}^{−\mathrm{1}} \frac{\sqrt{\mathrm{3}}\left({k}−{s}\right)}{{r}}−\mathrm{tan}^{−\mathrm{1}} \frac{\sqrt{\mathrm{3}}}{\mathrm{tan}\:\frac{\beta}{\mathrm{2}}}\right)+\frac{{k}−{s}}{{r}}−\frac{\mathrm{1}}{\mathrm{tan}\:\frac{\beta}{\mathrm{2}}}} \\ $$$$\Rightarrow\frac{\mathrm{2}\sqrt{{gr}}}{\sqrt{\mathrm{3}}}\int_{\mathrm{0}} ^{{t}} {dt}=\int_{{h}} ^{{r}} \frac{{ds}}{\sqrt{\frac{\mathrm{2}}{\sqrt{\mathrm{3}}}\left(\mathrm{tan}^{−\mathrm{1}} \frac{\sqrt{\mathrm{3}}\left({k}−{s}\right)}{{r}}−\mathrm{tan}^{−\mathrm{1}} \frac{\sqrt{\mathrm{3}}}{\mathrm{tan}\:\frac{\beta}{\mathrm{2}}}\right)+\frac{{k}−{s}}{{r}}−\frac{\mathrm{1}}{\mathrm{tan}\:\frac{\beta}{\mathrm{2}}}}} \\ $$$$\Rightarrow{t}=\frac{\sqrt{\mathrm{3}}}{\mathrm{2}\sqrt{{gr}}}\int_{{h}} ^{{r}} \frac{{ds}}{\sqrt{\frac{\mathrm{2}}{\sqrt{\mathrm{3}}}\left(\mathrm{tan}^{−\mathrm{1}} \frac{\sqrt{\mathrm{3}}\left({k}−{s}\right)}{{r}}−\mathrm{tan}^{−\mathrm{1}} \frac{\sqrt{\mathrm{3}}}{\mathrm{tan}\:\frac{\beta}{\mathrm{2}}}\right)+\frac{{k}−{s}}{{r}}−\frac{\mathrm{1}}{\mathrm{tan}\:\frac{\beta}{\mathrm{2}}}}} \\ $$$$...... \\ $$

Commented by ajfour last updated on 19/Oct/19

Commented by ajfour last updated on 19/Oct/19

Sir, it seems to me that      vcos θ=ωr   , please comment...

$${Sir},\:{it}\:{seems}\:{to}\:{me}\:{that} \\ $$$$\:\:\:\:{v}\mathrm{cos}\:\theta=\omega{r}\:\:\:,\:{please}\:{comment}... \\ $$

Commented by mr W last updated on 19/Oct/19

i thought exactly so at the begining,  then i changed my mind. let′s say  the length of wire is AD=l,  l+s=k=constant  the speed of unwinding ωr=(dl/dt)=−(ds/dt)=v.  actually i am still confused what is  really true.

$${i}\:{thought}\:{exactly}\:{so}\:{at}\:{the}\:{begining}, \\ $$$${then}\:{i}\:{changed}\:{my}\:{mind}.\:{let}'{s}\:{say} \\ $$$${the}\:{length}\:{of}\:{wire}\:{is}\:{AD}={l}, \\ $$$${l}+{s}={k}={constant} \\ $$$${the}\:{speed}\:{of}\:{unwinding}\:\omega{r}=\frac{{dl}}{{dt}}=−\frac{{ds}}{{dt}}={v}. \\ $$$${actually}\:{i}\:{am}\:{still}\:{confused}\:{what}\:{is} \\ $$$${really}\:{true}. \\ $$

Commented by ajfour last updated on 19/Oct/19

same here Sir, confused since  last night..

$${same}\:{here}\:{Sir},\:{confused}\:{since} \\ $$$${last}\:{night}.. \\ $$

Commented by mr W last updated on 20/Oct/19

Commented by mr W last updated on 20/Oct/19

i have clarified:  let AB=s  v=(ds/dt)  rotation of cylinder dϕ=(θ+dθ)+φ−θ=(ds/r)+dθ  with φ=(ds/r)=rotation due to unwinding  ω=(dϕ/dt)=(v/r)+(dθ/dt)=(v/r)+v(dθ/ds)  tan (θ/2)=(r/s)  (dθ/(2 cos^2  (θ/2)))=−((rds)/s^2 )=−tan^2  (θ/2)(ds/r)  ⇒(dθ/ds)=−(1/r)2 sin^2  (θ/2)  ⇒ω=(v/r)+v(dθ/ds)=(v/r)(1−2 sin^2  (θ/2))=((v cos θ)/r)  ⇒rω=v cos θ

$${i}\:{have}\:{clarified}: \\ $$$${let}\:{AB}={s} \\ $$$${v}=\frac{{ds}}{{dt}} \\ $$$${rotation}\:{of}\:{cylinder}\:{d}\varphi=\left(\theta+{d}\theta\right)+\phi−\theta=\frac{{ds}}{{r}}+{d}\theta \\ $$$${with}\:\phi=\frac{{ds}}{{r}}={rotation}\:{due}\:{to}\:{unwinding} \\ $$$$\omega=\frac{{d}\varphi}{{dt}}=\frac{{v}}{{r}}+\frac{{d}\theta}{{dt}}=\frac{{v}}{{r}}+{v}\frac{{d}\theta}{{ds}} \\ $$$$\mathrm{tan}\:\frac{\theta}{\mathrm{2}}=\frac{{r}}{{s}} \\ $$$$\frac{{d}\theta}{\mathrm{2}\:\mathrm{cos}^{\mathrm{2}} \:\frac{\theta}{\mathrm{2}}}=−\frac{{rds}}{{s}^{\mathrm{2}} }=−\mathrm{tan}^{\mathrm{2}} \:\frac{\theta}{\mathrm{2}}\frac{{ds}}{{r}} \\ $$$$\Rightarrow\frac{{d}\theta}{{ds}}=−\frac{\mathrm{1}}{{r}}\mathrm{2}\:\mathrm{sin}^{\mathrm{2}} \:\frac{\theta}{\mathrm{2}} \\ $$$$\Rightarrow\omega=\frac{{v}}{{r}}+{v}\frac{{d}\theta}{{ds}}=\frac{{v}}{{r}}\left(\mathrm{1}−\mathrm{2}\:\mathrm{sin}^{\mathrm{2}} \:\frac{\theta}{\mathrm{2}}\right)=\frac{{v}\:\mathrm{cos}\:\theta}{{r}} \\ $$$$\Rightarrow{r}\omega={v}\:\mathrm{cos}\:\theta \\ $$

Commented by mr W last updated on 20/Oct/19

new attempt:  s_0 =(r/(tan (β/2)))  s_1 =(r/(tan (β/2)))+h−r  mg(s−s_0 )=(1/2)mv^2 +(1/2)Iω^2   g(s−s_0 )=(1/2)v^2 +(r^2 /4)ω^2   g(s−s_0 )=(1/4)v^2 (2+cos^2  θ)  tan (θ/2)=(r/s)  cos θ=((1−((r/s))^2 )/(1+((r/s))^2 ))=((s^2 −r^2 )/(s^2 +r^2 ))  g(s−s_0 )=(1/4)v^2 [2+(((s^2 −r^2 )/(s^2 +r^2 )))^2 ]  ⇒v=2(√((g(s−s_0 ))/(2+(((s^2 −r^2 )/(s^2 +r^2 )))^2 )))  ⇒(ds/dt)=2(√g)(√((s−s_0 )/(2+(((s^2 −r^2 )/(s^2 +r^2 )))^2 )))  ⇒t=(1/(2(√g)))∫_s_0  ^s_1  (√((2+(((s^2 −r^2 )/(s^2 +r^2 )))^2 )/(s−s_0 )))ds

$${new}\:{attempt}: \\ $$$${s}_{\mathrm{0}} =\frac{{r}}{\mathrm{tan}\:\frac{\beta}{\mathrm{2}}} \\ $$$${s}_{\mathrm{1}} =\frac{{r}}{\mathrm{tan}\:\frac{\beta}{\mathrm{2}}}+{h}−{r} \\ $$$${mg}\left({s}−{s}_{\mathrm{0}} \right)=\frac{\mathrm{1}}{\mathrm{2}}{mv}^{\mathrm{2}} +\frac{\mathrm{1}}{\mathrm{2}}{I}\omega^{\mathrm{2}} \\ $$$${g}\left({s}−{s}_{\mathrm{0}} \right)=\frac{\mathrm{1}}{\mathrm{2}}{v}^{\mathrm{2}} +\frac{{r}^{\mathrm{2}} }{\mathrm{4}}\omega^{\mathrm{2}} \\ $$$${g}\left({s}−{s}_{\mathrm{0}} \right)=\frac{\mathrm{1}}{\mathrm{4}}{v}^{\mathrm{2}} \left(\mathrm{2}+\mathrm{cos}^{\mathrm{2}} \:\theta\right) \\ $$$$\mathrm{tan}\:\frac{\theta}{\mathrm{2}}=\frac{{r}}{{s}} \\ $$$$\mathrm{cos}\:\theta=\frac{\mathrm{1}−\left(\frac{{r}}{{s}}\right)^{\mathrm{2}} }{\mathrm{1}+\left(\frac{{r}}{{s}}\right)^{\mathrm{2}} }=\frac{{s}^{\mathrm{2}} −{r}^{\mathrm{2}} }{{s}^{\mathrm{2}} +{r}^{\mathrm{2}} } \\ $$$${g}\left({s}−{s}_{\mathrm{0}} \right)=\frac{\mathrm{1}}{\mathrm{4}}{v}^{\mathrm{2}} \left[\mathrm{2}+\left(\frac{{s}^{\mathrm{2}} −{r}^{\mathrm{2}} }{{s}^{\mathrm{2}} +{r}^{\mathrm{2}} }\right)^{\mathrm{2}} \right] \\ $$$$\Rightarrow{v}=\mathrm{2}\sqrt{\frac{{g}\left({s}−{s}_{\mathrm{0}} \right)}{\mathrm{2}+\left(\frac{{s}^{\mathrm{2}} −{r}^{\mathrm{2}} }{{s}^{\mathrm{2}} +{r}^{\mathrm{2}} }\right)^{\mathrm{2}} }} \\ $$$$\Rightarrow\frac{{ds}}{{dt}}=\mathrm{2}\sqrt{{g}}\sqrt{\frac{{s}−{s}_{\mathrm{0}} }{\mathrm{2}+\left(\frac{{s}^{\mathrm{2}} −{r}^{\mathrm{2}} }{{s}^{\mathrm{2}} +{r}^{\mathrm{2}} }\right)^{\mathrm{2}} }} \\ $$$$\Rightarrow{t}=\frac{\mathrm{1}}{\mathrm{2}\sqrt{{g}}}\int_{{s}_{\mathrm{0}} } ^{{s}_{\mathrm{1}} } \sqrt{\frac{\mathrm{2}+\left(\frac{{s}^{\mathrm{2}} −{r}^{\mathrm{2}} }{{s}^{\mathrm{2}} +{r}^{\mathrm{2}} }\right)^{\mathrm{2}} }{{s}−{s}_{\mathrm{0}} }}{ds} \\ $$

Commented by ajfour last updated on 21/Oct/19

Thanks sir, i cant find much  time to attempt myself sir, i  shall however try it today..

$${Thanks}\:{sir},\:{i}\:{cant}\:{find}\:{much} \\ $$$${time}\:{to}\:{attempt}\:{myself}\:{sir},\:{i} \\ $$$${shall}\:{however}\:{try}\:{it}\:{today}.. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com