Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 71664 by mathmax by abdo last updated on 18/Oct/19

find nature of the sequence U_n =(1/n)(Σ_(k=1) ^n  (1/k))^2

$${find}\:{nature}\:{of}\:{the}\:{sequence}\:{U}_{{n}} =\frac{\mathrm{1}}{{n}}\left(\sum_{{k}=\mathrm{1}} ^{{n}} \:\frac{\mathrm{1}}{{k}}\right)^{\mathrm{2}} \\ $$

Commented by mathmax by abdo last updated on 18/Oct/19

we have Σ_(i=1) ^n  x_i ^2 ≥(1/n)(Σ_(i=1) ^n x_i )^2    (result proved)  let x_i =(1/i) ⇒Σ_(i=1) ^n (1/i^2 ) ≥(1/n)(Σ_(i=1) ^i  (1/i))^2  ⇒0<U_n ≤Σ_(i=1) ^n  (1/i^2 ) ⇒  0≤lim_(n→+∞)  U_n ≤(π^2 /6)   the sequenc U_n converges.  another way  we have Σ_(k=1) ^n (1/k) =H_n =ln(n)+γ +o((1/n)) ⇒  ⇒H_n ∼ln(n)+γ ⇒H_n ^2 ∼ln^2 (n)+2γln(n)+γ^2   ∼ln^2 (n)(n→+∞) ⇒  U_n ∼((ln^2 (n))/n)  we have lim_(n→+∞)    ((ln^2 (e^n ))/e^n ) =lim_(n→+∞)   n^2  e^(−n) =0 ⇒  lim_(n→+∞)   U_n =0

$${we}\:{have}\:\sum_{{i}=\mathrm{1}} ^{{n}} \:{x}_{{i}} ^{\mathrm{2}} \geqslant\frac{\mathrm{1}}{{n}}\left(\sum_{{i}=\mathrm{1}} ^{{n}} {x}_{{i}} \right)^{\mathrm{2}} \:\:\:\left({result}\:{proved}\right) \\ $$$${let}\:{x}_{{i}} =\frac{\mathrm{1}}{{i}}\:\Rightarrow\sum_{{i}=\mathrm{1}} ^{{n}} \frac{\mathrm{1}}{{i}^{\mathrm{2}} }\:\geqslant\frac{\mathrm{1}}{{n}}\left(\sum_{{i}=\mathrm{1}} ^{{i}} \:\frac{\mathrm{1}}{{i}}\right)^{\mathrm{2}} \:\Rightarrow\mathrm{0}<{U}_{{n}} \leqslant\sum_{{i}=\mathrm{1}} ^{{n}} \:\frac{\mathrm{1}}{{i}^{\mathrm{2}} }\:\Rightarrow \\ $$$$\mathrm{0}\leqslant{lim}_{{n}\rightarrow+\infty} \:{U}_{{n}} \leqslant\frac{\pi^{\mathrm{2}} }{\mathrm{6}}\:\:\:{the}\:{sequenc}\:{U}_{{n}} {converges}. \\ $$$${another}\:{way}\:\:{we}\:{have}\:\sum_{{k}=\mathrm{1}} ^{{n}} \frac{\mathrm{1}}{{k}}\:={H}_{{n}} ={ln}\left({n}\right)+\gamma\:+{o}\left(\frac{\mathrm{1}}{{n}}\right)\:\Rightarrow \\ $$$$\Rightarrow{H}_{{n}} \sim{ln}\left({n}\right)+\gamma\:\Rightarrow{H}_{{n}} ^{\mathrm{2}} \sim{ln}^{\mathrm{2}} \left({n}\right)+\mathrm{2}\gamma{ln}\left({n}\right)+\gamma^{\mathrm{2}} \:\:\sim{ln}^{\mathrm{2}} \left({n}\right)\left({n}\rightarrow+\infty\right)\:\Rightarrow \\ $$$${U}_{{n}} \sim\frac{{ln}^{\mathrm{2}} \left({n}\right)}{{n}}\:\:{we}\:{have}\:{lim}_{{n}\rightarrow+\infty} \:\:\:\frac{{ln}^{\mathrm{2}} \left({e}^{{n}} \right)}{{e}^{{n}} }\:={lim}_{{n}\rightarrow+\infty} \:\:{n}^{\mathrm{2}} \:{e}^{−{n}} =\mathrm{0}\:\Rightarrow \\ $$$${lim}_{{n}\rightarrow+\infty} \:\:{U}_{{n}} =\mathrm{0} \\ $$

Answered by mind is power last updated on 18/Oct/19

∀n∈N^∗    we haveΣ_(k=1) ^n (1/k)≥1  ⇒Un≥(1/n)  ⇒ΣU_n ≥Σ(1/n)→+∞

$$\forall\mathrm{n}\in\mathbb{N}^{\ast} \:\:\:\mathrm{we}\:\mathrm{have}\sum_{\mathrm{k}=\mathrm{1}} ^{\mathrm{n}} \frac{\mathrm{1}}{\mathrm{k}}\geqslant\mathrm{1} \\ $$$$\Rightarrow\mathrm{Un}\geqslant\frac{\mathrm{1}}{\mathrm{n}} \\ $$$$\Rightarrow\Sigma\mathrm{U}_{\mathrm{n}} \geqslant\Sigma\frac{\mathrm{1}}{\mathrm{n}}\rightarrow+\infty \\ $$

Commented by mathmax by abdo last updated on 18/Oct/19

sir the question is find the nature of the sequence not the serie...

$${sir}\:{the}\:{question}\:{is}\:{find}\:{the}\:{nature}\:{of}\:{the}\:{sequence}\:{not}\:{the}\:{serie}... \\ $$

Commented by mind is power last updated on 18/Oct/19

ok sorry   for the sequence   Σ_(k=1) ^n (1/k)∽ln(n)  ⇒Un∽((ln^2 (n))/n)→0  un→0

$$\mathrm{ok}\:\mathrm{sorry}\: \\ $$$$\mathrm{for}\:\mathrm{the}\:\mathrm{sequence}\: \\ $$$$\underset{\mathrm{k}=\mathrm{1}} {\overset{\mathrm{n}} {\sum}}\frac{\mathrm{1}}{\mathrm{k}}\backsim\mathrm{ln}\left(\mathrm{n}\right) \\ $$$$\Rightarrow\mathrm{Un}\backsim\frac{\mathrm{ln}^{\mathrm{2}} \left(\mathrm{n}\right)}{\mathrm{n}}\rightarrow\mathrm{0} \\ $$$$\mathrm{un}\rightarrow\mathrm{0} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com