Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 71665 by mathmax by abdo last updated on 18/Oct/19

calculate ∫_0 ^∞   (dx/((x+1)^2 ((√(x^2 +4)))))

$${calculate}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{dx}}{\left({x}+\mathrm{1}\right)^{\mathrm{2}} \left(\sqrt{{x}^{\mathrm{2}} +\mathrm{4}}\right)} \\ $$

Answered by MJS last updated on 19/Oct/19

∫(dx/((x+1)^2 (√(x^2 +4))))=       [t=arctan (x/2) → dx=((x^2 +4)/2)dt]  =∫((cos t)/((cos t +2sin t)^2 ))dt=       [u=tan (t/2) → dt=((2du)/(u^2 +1))]  =−2∫((u^2 −1)/((u^2 −4u−1)^2 ))  now I′d use Ostrogradski′s Method once again  ∫(P/Q)=(P_1 /Q_1 )+∫(P_2 /Q_2 )  Q_1 =gcd (Q, Q′); Q_2 =(Q/Q_1 )  degree (P_i ) <degree (Q_i )  we find P_i  by comparing the factors of  (P/Q)=((P_1 /Q_1 ))′+(P_2 /Q_2 )  Q=(u^2 −4u−1)^2   Q′=4(u−2)(u^2 −4u−1)  Q_1 =Q_2 =u^2 −4u−1  P=u^2 −1  P_1 =−(4/5)u−(2/5)  P_2 =(1/5)  −2∫((u^2 −1)/((u^2 −4u−1)^2 ))=  =((4(2u+1))/(5(u^2 −4u−1)))−(2/5)∫(du/(u^2 −4u−1))=  =((4(2u+1))/(5(u^2 −4u−1)))−((√5)/(25))ln ((u−2−(√5))/(u−2+(√5))) =  =...=−((√(x^2 +4))/(5(x+1)))+((√5)/(25))ln ∣((x−4−(√(5(x^2 +4))))/(x+1))∣ +C    ∫_0 ^∞ (dx/((x+1)^2 (√(x^2 +4))))=(1/5)+((√5)/(25))ln (((7−3(√5))/2))

$$\int\frac{{dx}}{\left({x}+\mathrm{1}\right)^{\mathrm{2}} \sqrt{{x}^{\mathrm{2}} +\mathrm{4}}}= \\ $$$$\:\:\:\:\:\left[{t}=\mathrm{arctan}\:\frac{{x}}{\mathrm{2}}\:\rightarrow\:{dx}=\frac{{x}^{\mathrm{2}} +\mathrm{4}}{\mathrm{2}}{dt}\right] \\ $$$$=\int\frac{\mathrm{cos}\:{t}}{\left(\mathrm{cos}\:{t}\:+\mathrm{2sin}\:{t}\right)^{\mathrm{2}} }{dt}= \\ $$$$\:\:\:\:\:\left[{u}=\mathrm{tan}\:\frac{{t}}{\mathrm{2}}\:\rightarrow\:{dt}=\frac{\mathrm{2}{du}}{{u}^{\mathrm{2}} +\mathrm{1}}\right] \\ $$$$=−\mathrm{2}\int\frac{{u}^{\mathrm{2}} −\mathrm{1}}{\left({u}^{\mathrm{2}} −\mathrm{4}{u}−\mathrm{1}\right)^{\mathrm{2}} } \\ $$$$\mathrm{now}\:\mathrm{I}'\mathrm{d}\:\mathrm{use}\:\mathrm{Ostrogradski}'\mathrm{s}\:\mathrm{Method}\:\mathrm{once}\:\mathrm{again} \\ $$$$\int\frac{{P}}{{Q}}=\frac{{P}_{\mathrm{1}} }{{Q}_{\mathrm{1}} }+\int\frac{{P}_{\mathrm{2}} }{{Q}_{\mathrm{2}} } \\ $$$${Q}_{\mathrm{1}} =\mathrm{gcd}\:\left({Q},\:{Q}'\right);\:{Q}_{\mathrm{2}} =\frac{{Q}}{{Q}_{\mathrm{1}} } \\ $$$$\mathrm{degree}\:\left({P}_{{i}} \right)\:<\mathrm{degree}\:\left({Q}_{{i}} \right) \\ $$$$\mathrm{we}\:\mathrm{find}\:{P}_{{i}} \:\mathrm{by}\:\mathrm{comparing}\:\mathrm{the}\:\mathrm{factors}\:\mathrm{of} \\ $$$$\frac{{P}}{{Q}}=\left(\frac{{P}_{\mathrm{1}} }{{Q}_{\mathrm{1}} }\right)'+\frac{{P}_{\mathrm{2}} }{{Q}_{\mathrm{2}} } \\ $$$${Q}=\left({u}^{\mathrm{2}} −\mathrm{4}{u}−\mathrm{1}\right)^{\mathrm{2}} \\ $$$${Q}'=\mathrm{4}\left({u}−\mathrm{2}\right)\left({u}^{\mathrm{2}} −\mathrm{4}{u}−\mathrm{1}\right) \\ $$$${Q}_{\mathrm{1}} ={Q}_{\mathrm{2}} ={u}^{\mathrm{2}} −\mathrm{4}{u}−\mathrm{1} \\ $$$${P}={u}^{\mathrm{2}} −\mathrm{1} \\ $$$${P}_{\mathrm{1}} =−\frac{\mathrm{4}}{\mathrm{5}}{u}−\frac{\mathrm{2}}{\mathrm{5}} \\ $$$${P}_{\mathrm{2}} =\frac{\mathrm{1}}{\mathrm{5}} \\ $$$$−\mathrm{2}\int\frac{{u}^{\mathrm{2}} −\mathrm{1}}{\left({u}^{\mathrm{2}} −\mathrm{4}{u}−\mathrm{1}\right)^{\mathrm{2}} }= \\ $$$$=\frac{\mathrm{4}\left(\mathrm{2}{u}+\mathrm{1}\right)}{\mathrm{5}\left({u}^{\mathrm{2}} −\mathrm{4}{u}−\mathrm{1}\right)}−\frac{\mathrm{2}}{\mathrm{5}}\int\frac{{du}}{{u}^{\mathrm{2}} −\mathrm{4}{u}−\mathrm{1}}= \\ $$$$=\frac{\mathrm{4}\left(\mathrm{2}{u}+\mathrm{1}\right)}{\mathrm{5}\left({u}^{\mathrm{2}} −\mathrm{4}{u}−\mathrm{1}\right)}−\frac{\sqrt{\mathrm{5}}}{\mathrm{25}}\mathrm{ln}\:\frac{{u}−\mathrm{2}−\sqrt{\mathrm{5}}}{{u}−\mathrm{2}+\sqrt{\mathrm{5}}}\:= \\ $$$$=...=−\frac{\sqrt{{x}^{\mathrm{2}} +\mathrm{4}}}{\mathrm{5}\left({x}+\mathrm{1}\right)}+\frac{\sqrt{\mathrm{5}}}{\mathrm{25}}\mathrm{ln}\:\mid\frac{{x}−\mathrm{4}−\sqrt{\mathrm{5}\left({x}^{\mathrm{2}} +\mathrm{4}\right)}}{{x}+\mathrm{1}}\mid\:+{C} \\ $$$$ \\ $$$$\underset{\mathrm{0}} {\overset{\infty} {\int}}\frac{{dx}}{\left({x}+\mathrm{1}\right)^{\mathrm{2}} \sqrt{{x}^{\mathrm{2}} +\mathrm{4}}}=\frac{\mathrm{1}}{\mathrm{5}}+\frac{\sqrt{\mathrm{5}}}{\mathrm{25}}\mathrm{ln}\:\left(\frac{\mathrm{7}−\mathrm{3}\sqrt{\mathrm{5}}}{\mathrm{2}}\right) \\ $$

Commented by Abdo msup. last updated on 19/Oct/19

thank you sir.

$${thank}\:{you}\:{sir}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com