Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 71739 by Tony Lin last updated on 19/Oct/19

find the asymptote of folium of   Descartes x^3 +y^3 =3axy, and a is a  constant >0

$${find}\:{the}\:{asymptote}\:{of}\:{folium}\:{of}\: \\ $$ $${Descartes}\:{x}^{\mathrm{3}} +{y}^{\mathrm{3}} =\mathrm{3}{axy},\:{and}\:{a}\:{is}\:{a} \\ $$ $${constant}\:>\mathrm{0} \\ $$

Answered by Tony Lin last updated on 19/Oct/19

let y=tx  ⇒x^3 +(tx)^3 =3atx^2    { ((x=((3at)/(1+t^3 )))),((y=((3at^2 )/(1+t^3 )))) :}  x→±∞⇒t→−1  let the asymptote L: mx+b  lim_(t→−1) (y/x)=−1=m  lim_(t→−1) [y−(−x)]  =lim_(x→−1) ((3at(t+1))/((t+1)(t^2 −t+1)))  =−a  =b  therefore  asymptote L:−x−a

$${let}\:{y}={tx} \\ $$ $$\Rightarrow{x}^{\mathrm{3}} +\left({tx}\right)^{\mathrm{3}} =\mathrm{3}{atx}^{\mathrm{2}} \\ $$ $$\begin{cases}{{x}=\frac{\mathrm{3}{at}}{\mathrm{1}+{t}^{\mathrm{3}} }}\\{{y}=\frac{\mathrm{3}{at}^{\mathrm{2}} }{\mathrm{1}+{t}^{\mathrm{3}} }}\end{cases} \\ $$ $${x}\rightarrow\pm\infty\Rightarrow{t}\rightarrow−\mathrm{1} \\ $$ $${let}\:{the}\:{asymptote}\:{L}:\:{mx}+{b} \\ $$ $$\underset{{t}\rightarrow−\mathrm{1}} {\mathrm{lim}}\frac{{y}}{{x}}=−\mathrm{1}={m} \\ $$ $$\underset{{t}\rightarrow−\mathrm{1}} {\mathrm{lim}}\left[{y}−\left(−{x}\right)\right] \\ $$ $$=\underset{{x}\rightarrow−\mathrm{1}} {\mathrm{lim}}\frac{\mathrm{3}{at}\left({t}+\mathrm{1}\right)}{\left({t}+\mathrm{1}\right)\left({t}^{\mathrm{2}} −{t}+\mathrm{1}\right)} \\ $$ $$=−{a} \\ $$ $$={b} \\ $$ $${therefore} \\ $$ $${asymptote}\:{L}:−{x}−{a} \\ $$

Answered by MJS last updated on 19/Oct/19

x^3 +y^3 −3axy=0  turning  x=((√2)/2)(x^∗ +y^∗ )∧y=((√2)/2)(x^∗ −y^∗ )  ((3(a+(√2)x^∗ ))/2)(y^∗ )^2 −(((3a−(√2)x^∗ )(x^∗ )^2 )/2)=0  ⇒ y^∗ =±((x^∗ (√(9a−3(√2)x^∗ )))/(3(√(a+(√2)x^∗ ))))  denominator not defined for x^∗ =−(((√2)a)/2)+0y^∗   turning back  p=((√2)/2)(x+y)∧q=((√2)/2)(x−y)  ((√2)/2)(x+y)=−(((√2)a)/2)  y=−x−a is the asymptote

$${x}^{\mathrm{3}} +{y}^{\mathrm{3}} −\mathrm{3}{axy}=\mathrm{0} \\ $$ $$\mathrm{turning} \\ $$ $${x}=\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}\left({x}^{\ast} +{y}^{\ast} \right)\wedge{y}=\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}\left({x}^{\ast} −{y}^{\ast} \right) \\ $$ $$\frac{\mathrm{3}\left({a}+\sqrt{\mathrm{2}}{x}^{\ast} \right)}{\mathrm{2}}\left({y}^{\ast} \right)^{\mathrm{2}} −\frac{\left(\mathrm{3}{a}−\sqrt{\mathrm{2}}{x}^{\ast} \right)\left({x}^{\ast} \right)^{\mathrm{2}} }{\mathrm{2}}=\mathrm{0} \\ $$ $$\Rightarrow\:{y}^{\ast} =\pm\frac{{x}^{\ast} \sqrt{\mathrm{9}{a}−\mathrm{3}\sqrt{\mathrm{2}}{x}^{\ast} }}{\mathrm{3}\sqrt{{a}+\sqrt{\mathrm{2}}{x}^{\ast} }} \\ $$ $$\mathrm{denominator}\:\mathrm{not}\:\mathrm{defined}\:\mathrm{for}\:{x}^{\ast} =−\frac{\sqrt{\mathrm{2}}{a}}{\mathrm{2}}+\mathrm{0}{y}^{\ast} \\ $$ $$\mathrm{turning}\:\mathrm{back} \\ $$ $${p}=\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}\left({x}+{y}\right)\wedge{q}=\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}\left({x}−{y}\right) \\ $$ $$\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}\left({x}+{y}\right)=−\frac{\sqrt{\mathrm{2}}{a}}{\mathrm{2}} \\ $$ $${y}=−{x}−{a}\:\mathrm{is}\:\mathrm{the}\:\mathrm{asymptote} \\ $$

Commented byMJS last updated on 19/Oct/19

there might be an easier path...

$$\mathrm{there}\:\mathrm{might}\:\mathrm{be}\:\mathrm{an}\:\mathrm{easier}\:\mathrm{path}... \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com