Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 71761 by TawaTawa last updated on 19/Oct/19

Find at least the first four non zero term in a power  series expansion about  x  =  0  for a general solution  to    z′′  −  x^2 z   =  0

$$\mathrm{Find}\:\mathrm{at}\:\mathrm{least}\:\mathrm{the}\:\mathrm{first}\:\mathrm{four}\:\mathrm{non}\:\mathrm{zero}\:\mathrm{term}\:\mathrm{in}\:\mathrm{a}\:\mathrm{power} \\ $$$$\mathrm{series}\:\mathrm{expansion}\:\mathrm{about}\:\:\mathrm{x}\:\:=\:\:\mathrm{0}\:\:\mathrm{for}\:\mathrm{a}\:\mathrm{general}\:\mathrm{solution} \\ $$$$\mathrm{to}\:\:\:\:\mathrm{z}''\:\:−\:\:\mathrm{x}^{\mathrm{2}} \mathrm{z}\:\:\:=\:\:\mathrm{0} \\ $$

Commented by mathmax by abdo last updated on 19/Oct/19

let z =Σ_(n=0) ^∞ a_n x^n  ⇒z^′ =Σ_(n=1) ^∞ na_n x^(n−1)  and z^(′′) =Σ_(n=2) ^∞ n(n−1)a_n x^(n−2)   (e)⇒Σ_(n=2) ^∞ n_((ch. n−2=k)) (n−1)a_n x^(n−2) −x^2 Σ_(n=0) ^∞  a_n x^n =0 ⇒  =Σ_(k=0) ^∞ (k+2)(k+1)a_(k+2) x^k −Σ_(k=0(ch.k+2=n)) ^∞  a_k x^(k+2) =0 ⇒  Σ_(k=0) ^∞ (k+1)(k+2)a_(k+2) x^k −Σ_(n=2) ^∞  a_(n−2) x^n  =0 ⇒  2a_2  +6a_3 x +Σ_(n=2) ^∞ {(n+1)(n+2)a_(n+2) −a_(n−2) }x^n  =0 ⇒a_2 =a_3 =0 and  ∀n≥2   (n+1)(n+2)a_(n+2) −a_(n−2) =0 ⇒∀n≥2   a_(n+2) =(a_(n−2) /((n+1)(n+2))) ⇒a_2 =(a_0 /(1×2))=0 ⇒a_0 =0  a_3 =(a_1 /(2×6)) =0 ⇒a_1 =0  we have a_(2n+2) =(a_(2n) /((2n+1)(2n+2))) and  a_(2n+3) =(a_(2n−1) /((2n+2)(2n+3)))

$${let}\:{z}\:=\sum_{{n}=\mathrm{0}} ^{\infty} {a}_{{n}} {x}^{{n}} \:\Rightarrow{z}^{'} =\sum_{{n}=\mathrm{1}} ^{\infty} {na}_{{n}} {x}^{{n}−\mathrm{1}} \:{and}\:{z}^{''} =\sum_{{n}=\mathrm{2}} ^{\infty} {n}\left({n}−\mathrm{1}\right){a}_{{n}} {x}^{{n}−\mathrm{2}} \\ $$$$\left({e}\right)\Rightarrow\sum_{{n}=\mathrm{2}} ^{\infty} {n}_{\left({ch}.\:{n}−\mathrm{2}={k}\right)} \left({n}−\mathrm{1}\right){a}_{{n}} {x}^{{n}−\mathrm{2}} −{x}^{\mathrm{2}} \sum_{{n}=\mathrm{0}} ^{\infty} \:{a}_{{n}} {x}^{{n}} =\mathrm{0}\:\Rightarrow \\ $$$$=\sum_{{k}=\mathrm{0}} ^{\infty} \left({k}+\mathrm{2}\right)\left({k}+\mathrm{1}\right){a}_{{k}+\mathrm{2}} {x}^{{k}} −\sum_{{k}=\mathrm{0}\left({ch}.{k}+\mathrm{2}={n}\right)} ^{\infty} \:{a}_{{k}} {x}^{{k}+\mathrm{2}} =\mathrm{0}\:\Rightarrow \\ $$$$\sum_{{k}=\mathrm{0}} ^{\infty} \left({k}+\mathrm{1}\right)\left({k}+\mathrm{2}\right){a}_{{k}+\mathrm{2}} {x}^{{k}} −\sum_{{n}=\mathrm{2}} ^{\infty} \:{a}_{{n}−\mathrm{2}} {x}^{{n}} \:=\mathrm{0}\:\Rightarrow \\ $$$$\mathrm{2}{a}_{\mathrm{2}} \:+\mathrm{6}{a}_{\mathrm{3}} {x}\:+\sum_{{n}=\mathrm{2}} ^{\infty} \left\{\left({n}+\mathrm{1}\right)\left({n}+\mathrm{2}\right){a}_{{n}+\mathrm{2}} −{a}_{{n}−\mathrm{2}} \right\}{x}^{{n}} \:=\mathrm{0}\:\Rightarrow{a}_{\mathrm{2}} ={a}_{\mathrm{3}} =\mathrm{0}\:{and} \\ $$$$\forall{n}\geqslant\mathrm{2}\:\:\:\left({n}+\mathrm{1}\right)\left({n}+\mathrm{2}\right){a}_{{n}+\mathrm{2}} −{a}_{{n}−\mathrm{2}} =\mathrm{0}\:\Rightarrow\forall{n}\geqslant\mathrm{2}\: \\ $$$${a}_{{n}+\mathrm{2}} =\frac{{a}_{{n}−\mathrm{2}} }{\left({n}+\mathrm{1}\right)\left({n}+\mathrm{2}\right)}\:\Rightarrow{a}_{\mathrm{2}} =\frac{{a}_{\mathrm{0}} }{\mathrm{1}×\mathrm{2}}=\mathrm{0}\:\Rightarrow{a}_{\mathrm{0}} =\mathrm{0} \\ $$$${a}_{\mathrm{3}} =\frac{{a}_{\mathrm{1}} }{\mathrm{2}×\mathrm{6}}\:=\mathrm{0}\:\Rightarrow{a}_{\mathrm{1}} =\mathrm{0} \\ $$$${we}\:{have}\:{a}_{\mathrm{2}{n}+\mathrm{2}} =\frac{{a}_{\mathrm{2}{n}} }{\left(\mathrm{2}{n}+\mathrm{1}\right)\left(\mathrm{2}{n}+\mathrm{2}\right)}\:{and} \\ $$$${a}_{\mathrm{2}{n}+\mathrm{3}} =\frac{{a}_{\mathrm{2}{n}−\mathrm{1}} }{\left(\mathrm{2}{n}+\mathrm{2}\right)\left(\mathrm{2}{n}+\mathrm{3}\right)} \\ $$$$ \\ $$

Commented by mathmax by abdo last updated on 19/Oct/19

we have (a_(2n+2) /a_(2n) ) =(1/(2(n+1)(2n+1))) ⇒  Π_(k=2) ^n   (a_(2k+2) /a_(2k) ) =(1/2^(n−2) )×Π_(k=2) ^n   (1/((k+1)(2k+1))) ⇒  (a_6 /a_4 ).(a_8 /a_6 )......(a_(2n+2) /a_(2n) ) =(1/2^(n−2) )×Π_(k=2) ^n  (1/(k+1))Π_(k=2) ^n  (1/(2k+1))  =(1/2^(n−2) )×(1/(3.4....(n+1)))×(1/(5.7.....(2n+1)))  =(2/2^(n−2) )×(1/((n+1)!)) ×((3.2.6.....(2n))/(2.3.5.6.7.....(2n)(2n+1)))  =(2/(2^(n−2) (n+1)!))×((3. 2^n n!)/((2n+1)!)) =2^(n+1−n+2) ×((n!)/((n+1)!(2n+1)!))  =((8n!)/((n+1)!(2n+1)!)) ....

$${we}\:{have}\:\frac{{a}_{\mathrm{2}{n}+\mathrm{2}} }{{a}_{\mathrm{2}{n}} }\:=\frac{\mathrm{1}}{\mathrm{2}\left({n}+\mathrm{1}\right)\left(\mathrm{2}{n}+\mathrm{1}\right)}\:\Rightarrow \\ $$$$\prod_{{k}=\mathrm{2}} ^{{n}} \:\:\frac{{a}_{\mathrm{2}{k}+\mathrm{2}} }{{a}_{\mathrm{2}{k}} }\:=\frac{\mathrm{1}}{\mathrm{2}^{{n}−\mathrm{2}} }×\prod_{{k}=\mathrm{2}} ^{{n}} \:\:\frac{\mathrm{1}}{\left({k}+\mathrm{1}\right)\left(\mathrm{2}{k}+\mathrm{1}\right)}\:\Rightarrow \\ $$$$\frac{{a}_{\mathrm{6}} }{{a}_{\mathrm{4}} }.\frac{{a}_{\mathrm{8}} }{{a}_{\mathrm{6}} }......\frac{{a}_{\mathrm{2}{n}+\mathrm{2}} }{{a}_{\mathrm{2}{n}} }\:=\frac{\mathrm{1}}{\mathrm{2}^{{n}−\mathrm{2}} }×\prod_{{k}=\mathrm{2}} ^{{n}} \:\frac{\mathrm{1}}{{k}+\mathrm{1}}\prod_{{k}=\mathrm{2}} ^{{n}} \:\frac{\mathrm{1}}{\mathrm{2}{k}+\mathrm{1}} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}^{{n}−\mathrm{2}} }×\frac{\mathrm{1}}{\mathrm{3}.\mathrm{4}....\left({n}+\mathrm{1}\right)}×\frac{\mathrm{1}}{\mathrm{5}.\mathrm{7}.....\left(\mathrm{2}{n}+\mathrm{1}\right)} \\ $$$$=\frac{\mathrm{2}}{\mathrm{2}^{{n}−\mathrm{2}} }×\frac{\mathrm{1}}{\left({n}+\mathrm{1}\right)!}\:×\frac{\mathrm{3}.\mathrm{2}.\mathrm{6}.....\left(\mathrm{2}{n}\right)}{\mathrm{2}.\mathrm{3}.\mathrm{5}.\mathrm{6}.\mathrm{7}.....\left(\mathrm{2}{n}\right)\left(\mathrm{2}{n}+\mathrm{1}\right)} \\ $$$$=\frac{\mathrm{2}}{\mathrm{2}^{{n}−\mathrm{2}} \left({n}+\mathrm{1}\right)!}×\frac{\mathrm{3}.\:\mathrm{2}^{{n}} {n}!}{\left(\mathrm{2}{n}+\mathrm{1}\right)!}\:=\mathrm{2}^{{n}+\mathrm{1}−{n}+\mathrm{2}} ×\frac{{n}!}{\left({n}+\mathrm{1}\right)!\left(\mathrm{2}{n}+\mathrm{1}\right)!} \\ $$$$=\frac{\mathrm{8}{n}!}{\left({n}+\mathrm{1}\right)!\left(\mathrm{2}{n}+\mathrm{1}\right)!}\:.... \\ $$

Commented by TawaTawa last updated on 19/Oct/19

God bless you sir. Thanks for your time

$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir}.\:\mathrm{Thanks}\:\mathrm{for}\:\mathrm{your}\:\mathrm{time} \\ $$

Commented by mathmax by abdo last updated on 20/Oct/19

you are welcome.

$${you}\:{are}\:{welcome}. \\ $$

Commented by TawaTawa last updated on 23/Oct/19

Sir,  will i just put values of   n  =  1, 2, 3, 4,  ....  to find the least first four term ?

$$\mathrm{Sir},\:\:\mathrm{will}\:\mathrm{i}\:\mathrm{just}\:\mathrm{put}\:\mathrm{values}\:\mathrm{of}\:\:\:\mathrm{n}\:\:=\:\:\mathrm{1},\:\mathrm{2},\:\mathrm{3},\:\mathrm{4},\:\:.... \\ $$$$\mathrm{to}\:\mathrm{find}\:\mathrm{the}\:\mathrm{least}\:\mathrm{first}\:\mathrm{four}\:\mathrm{term}\:? \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com