Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 71819 by Maclaurin Stickker last updated on 20/Oct/19

There are 3 tangent circumferences  inscribed in an isosceles right triangle  Two of these circumferences have  radius R and are tangent to the   hypotenuse and to the two cathetus.  The smaller circumference has   radius r and is tangent to the two  cathetus. How can I find the radius  of the smaller circumference as a  function of R?  (I want a tip on how to solve the   problem).

$${There}\:{are}\:\mathrm{3}\:{tangent}\:{circumferences} \\ $$$${inscribed}\:{in}\:{an}\:{isosceles}\:{right}\:{triangle} \\ $$$${Two}\:{of}\:{these}\:{circumferences}\:{have} \\ $$$${radius}\:\boldsymbol{{R}}\:{and}\:{are}\:{tangent}\:{to}\:{the}\: \\ $$$${hypotenuse}\:{and}\:{to}\:{the}\:{two}\:{cathetus}. \\ $$$${The}\:{smaller}\:{circumference}\:{has}\: \\ $$$${radius}\:\boldsymbol{{r}}\:{and}\:{is}\:{tangent}\:{to}\:{the}\:{two} \\ $$$${cathetus}.\:{How}\:{can}\:{I}\:{find}\:{the}\:{radius} \\ $$$${of}\:{the}\:{smaller}\:{circumference}\:{as}\:{a} \\ $$$${function}\:{of}\:\boldsymbol{{R}}? \\ $$$$\left({I}\:{want}\:{a}\:{tip}\:{on}\:{how}\:{to}\:{solve}\:{the}\:\right. \\ $$$$\left.{problem}\right). \\ $$

Commented by mr W last updated on 20/Oct/19

Commented by mr W last updated on 20/Oct/19

is this what you mean?

$${is}\:{this}\:{what}\:{you}\:{mean}? \\ $$

Commented by Maclaurin Stickker last updated on 20/Oct/19

Yes! I′d like a tip on how to solve.

$${Yes}!\:{I}'{d}\:{like}\:{a}\:{tip}\:{on}\:{how}\:{to}\:{solve}. \\ $$

Answered by mr W last updated on 20/Oct/19

Commented by mr W last updated on 20/Oct/19

AB=(√2)r+(√((r+R)^2 −R^2 ))+R=(√2)r+(√(r(2R+r)))+R  tan 22.5°=((sin 45°)/(1+cos 45°))=(((√2)/2)/(1+((√2)/2)))=(√2)−1  DC=(R/(tan 22.5°))=(R/((√2)−1))=((√2)+1)R  BC=R+((√2)+1)R=(2+(√2))R  AB=BC  (√2)r+(√(r(2R+r)))+R=(2+(√2))R  (√(r(2R+r)))=(1+(√2))R−(√2)r  r(2R+r)=(1+(√2))^2 R^2 +2r^2 −2(1+(√2))(√2)Rr  ⇒r^2 −2((√2)+3)Rr+(1+(√2))^2 R^2 =0  ⇒r=(3+(√2)−2(√(2+(√2))))R  ⇒r=((√(2+(√2)))−1)^2 R≈0.7187R

$${AB}=\sqrt{\mathrm{2}}{r}+\sqrt{\left({r}+{R}\right)^{\mathrm{2}} −{R}^{\mathrm{2}} }+{R}=\sqrt{\mathrm{2}}{r}+\sqrt{{r}\left(\mathrm{2}{R}+{r}\right)}+{R} \\ $$$$\mathrm{tan}\:\mathrm{22}.\mathrm{5}°=\frac{\mathrm{sin}\:\mathrm{45}°}{\mathrm{1}+\mathrm{cos}\:\mathrm{45}°}=\frac{\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}}{\mathrm{1}+\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}}=\sqrt{\mathrm{2}}−\mathrm{1} \\ $$$${DC}=\frac{{R}}{\mathrm{tan}\:\mathrm{22}.\mathrm{5}°}=\frac{{R}}{\sqrt{\mathrm{2}}−\mathrm{1}}=\left(\sqrt{\mathrm{2}}+\mathrm{1}\right){R} \\ $$$${BC}={R}+\left(\sqrt{\mathrm{2}}+\mathrm{1}\right){R}=\left(\mathrm{2}+\sqrt{\mathrm{2}}\right){R} \\ $$$${AB}={BC} \\ $$$$\sqrt{\mathrm{2}}{r}+\sqrt{{r}\left(\mathrm{2}{R}+{r}\right)}+{R}=\left(\mathrm{2}+\sqrt{\mathrm{2}}\right){R} \\ $$$$\sqrt{{r}\left(\mathrm{2}{R}+{r}\right)}=\left(\mathrm{1}+\sqrt{\mathrm{2}}\right){R}−\sqrt{\mathrm{2}}{r} \\ $$$${r}\left(\mathrm{2}{R}+{r}\right)=\left(\mathrm{1}+\sqrt{\mathrm{2}}\right)^{\mathrm{2}} {R}^{\mathrm{2}} +\mathrm{2}{r}^{\mathrm{2}} −\mathrm{2}\left(\mathrm{1}+\sqrt{\mathrm{2}}\right)\sqrt{\mathrm{2}}{Rr} \\ $$$$\Rightarrow{r}^{\mathrm{2}} −\mathrm{2}\left(\sqrt{\mathrm{2}}+\mathrm{3}\right){Rr}+\left(\mathrm{1}+\sqrt{\mathrm{2}}\right)^{\mathrm{2}} {R}^{\mathrm{2}} =\mathrm{0} \\ $$$$\Rightarrow{r}=\left(\mathrm{3}+\sqrt{\mathrm{2}}−\mathrm{2}\sqrt{\mathrm{2}+\sqrt{\mathrm{2}}}\right){R} \\ $$$$\Rightarrow{r}=\left(\sqrt{\mathrm{2}+\sqrt{\mathrm{2}}}−\mathrm{1}\right)^{\mathrm{2}} {R}\approx\mathrm{0}.\mathrm{7187}{R} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com