Question and Answers Forum

All Questions      Topic List

Mechanics Questions

Previous in All Question      Next in All Question      

Previous in Mechanics      Next in Mechanics      

Question Number 71939 by ajfour last updated on 22/Oct/19

Commented by ajfour last updated on 22/Oct/19

Find v and V in terms of given  parameters. coefficient of  restitution is e and the plane is  frictionless horizontal ground.

$${Find}\:{v}\:{and}\:{V}\:{in}\:{terms}\:{of}\:{given} \\ $$$${parameters}.\:{coefficient}\:{of} \\ $$$${restitution}\:{is}\:{e}\:{and}\:{the}\:{plane}\:{is} \\ $$$${frictionless}\:{horizontal}\:{ground}. \\ $$

Answered by mr W last updated on 22/Oct/19

Commented by mr W last updated on 22/Oct/19

let μ=(M/m)  sin θ=(b/(R+r))  u_(1x) =u sin θ  u_(1y) =u cos θ  u_(1x) =v_(1x) +v_(2x)   mu_(1x) =mv_(1x) −Mv_(2x)   u_(1x) =v_(1x) −μv_(2x)   ⇒v_(2x) =0  ⇒v_(1x) =u_(1x) =u sin θ  eu_(1y) =v_(2y) −v_(1y)   mu_(1y) =mv_(1y) +Mv_(2y)   u_(1y) =v_(1y) +μv_(2y)   (1+e)u_(1y) =(1+μ)v_(2y)   ⇒v_(2y) =((1+e)/(1+μ))u_(1y) =(((1+e)u cos θ)/(1+μ))  ⇒v_(1y) =(((1−eμ)u cos θ)/(1+μ))  v=(√(v_(1x) ^2 +v_(1y) ^2 ))=u(√(sin^2  θ+(((1−eμ)/(1+μ)))^2 cos^2  θ))  V=v_(2y) =(((1+e)u cos θ)/(1+μ))

$${let}\:\mu=\frac{{M}}{{m}} \\ $$$$\mathrm{sin}\:\theta=\frac{{b}}{{R}+{r}} \\ $$$${u}_{\mathrm{1}{x}} ={u}\:\mathrm{sin}\:\theta \\ $$$${u}_{\mathrm{1}{y}} ={u}\:\mathrm{cos}\:\theta \\ $$$${u}_{\mathrm{1}{x}} ={v}_{\mathrm{1}{x}} +{v}_{\mathrm{2}{x}} \\ $$$${mu}_{\mathrm{1}{x}} ={mv}_{\mathrm{1}{x}} −{Mv}_{\mathrm{2}{x}} \\ $$$${u}_{\mathrm{1}{x}} ={v}_{\mathrm{1}{x}} −\mu{v}_{\mathrm{2}{x}} \\ $$$$\Rightarrow{v}_{\mathrm{2}{x}} =\mathrm{0} \\ $$$$\Rightarrow{v}_{\mathrm{1}{x}} ={u}_{\mathrm{1}{x}} ={u}\:\mathrm{sin}\:\theta \\ $$$${eu}_{\mathrm{1}{y}} ={v}_{\mathrm{2}{y}} −{v}_{\mathrm{1}{y}} \\ $$$${mu}_{\mathrm{1}{y}} ={mv}_{\mathrm{1}{y}} +{Mv}_{\mathrm{2}{y}} \\ $$$${u}_{\mathrm{1}{y}} ={v}_{\mathrm{1}{y}} +\mu{v}_{\mathrm{2}{y}} \\ $$$$\left(\mathrm{1}+{e}\right){u}_{\mathrm{1}{y}} =\left(\mathrm{1}+\mu\right){v}_{\mathrm{2}{y}} \\ $$$$\Rightarrow{v}_{\mathrm{2}{y}} =\frac{\mathrm{1}+{e}}{\mathrm{1}+\mu}{u}_{\mathrm{1}{y}} =\frac{\left(\mathrm{1}+{e}\right){u}\:\mathrm{cos}\:\theta}{\mathrm{1}+\mu} \\ $$$$\Rightarrow{v}_{\mathrm{1}{y}} =\frac{\left(\mathrm{1}−{e}\mu\right){u}\:\mathrm{cos}\:\theta}{\mathrm{1}+\mu} \\ $$$${v}=\sqrt{{v}_{\mathrm{1}{x}} ^{\mathrm{2}} +{v}_{\mathrm{1}{y}} ^{\mathrm{2}} }={u}\sqrt{\mathrm{sin}^{\mathrm{2}} \:\theta+\left(\frac{\mathrm{1}−{e}\mu}{\mathrm{1}+\mu}\right)^{\mathrm{2}} \mathrm{cos}^{\mathrm{2}} \:\theta} \\ $$$${V}={v}_{\mathrm{2}{y}} =\frac{\left(\mathrm{1}+{e}\right){u}\:\mathrm{cos}\:\theta}{\mathrm{1}+\mu} \\ $$

Commented by ajfour last updated on 23/Oct/19

Thanks sir, beautiful solution.

$${Thanks}\:{sir},\:{beautiful}\:{solution}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com