Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 71944 by aliesam last updated on 22/Oct/19

Answered by mind is power last updated on 23/Oct/19

a={(−1)^k (1−(1/k));k∈Z}  let a_n ∈a  a_(2n) =1(1−(1/(2n)))→1  a_(2n+1) =−1(1−(1/(2n+1)))→−1  for a={−1,1}  b:Z=Z  let a bee acumulstion point of Z  ⇒a∈adh(Z−{a})⇒a∈adh(Z)=Z  ⇒a∈Z but adh(Z−{a})=Z−{a}⇒a∈Z−{a} absurd  b={} empty set  we will zhow that is R  we see that ∀n∈IN  ((√2))^(1/n) ∈IR−{Q}  suppose inver⇒((√2))^(1/n) =(a/b)⇒(√2)=(a^n /b^n )∈Q aburde   u_n  s.((√2))^(1/n) .n∈IN^∗ .∈IR−{Q} ,s∈Q  u_n →s∈Q⇒for C=IR−{Q}∪Q=IR  for this we must show that ∀x∈IR ∃u_n ∈IR−{Q∪{x}}  such that u_n →x  if x∈Q  just put u_n =((√2))^(1/n) .x→x  and ∀n∈N^∗ un∉IR−{Q}  x∉Q⇒x∈IR−{Q} mor difficult  u_n = { ((x−1+((√2))^(1/n) ,if x−1+((√2))^(1/n) ∉Q)),((x−1+((√3))^(1/n)   else)) :}  suppose ∃_n for witch x−1+((√3))^(1/n) =(a/b)⇒  oand x−1+((√2))^(1/n) =(c/d)⇒(a/b)−((√3))^(1/n) +((√2))_ ^(1/n) =(c/d)  ⇒∃_n ∈N^∗ such that ((√2))^(1/n) −((√3))^(1/n) ∈Q  absurd U_(n ) well defind →x

$$\mathrm{a}=\left\{\left(−\mathrm{1}\right)^{\mathrm{k}} \left(\mathrm{1}−\frac{\mathrm{1}}{\mathrm{k}}\right);\mathrm{k}\in\mathrm{Z}\right\} \\ $$$$\mathrm{let}\:\mathrm{a}_{\mathrm{n}} \in\mathrm{a} \\ $$$$\mathrm{a}_{\mathrm{2n}} =\mathrm{1}\left(\mathrm{1}−\frac{\mathrm{1}}{\mathrm{2n}}\right)\rightarrow\mathrm{1} \\ $$$$\mathrm{a}_{\mathrm{2n}+\mathrm{1}} =−\mathrm{1}\left(\mathrm{1}−\frac{\mathrm{1}}{\mathrm{2n}+\mathrm{1}}\right)\rightarrow−\mathrm{1} \\ $$$$\mathrm{for}\:\mathrm{a}=\left\{−\mathrm{1},\mathrm{1}\right\} \\ $$$$\mathrm{b}:\mathrm{Z}=\mathrm{Z} \\ $$$$\mathrm{let}\:\mathrm{a}\:\mathrm{bee}\:\mathrm{acumulstion}\:\mathrm{point}\:\mathrm{of}\:\mathrm{Z} \\ $$$$\Rightarrow\mathrm{a}\in\mathrm{adh}\left(\mathrm{Z}−\left\{\mathrm{a}\right\}\right)\Rightarrow\mathrm{a}\in\mathrm{adh}\left(\mathrm{Z}\right)=\mathrm{Z} \\ $$$$\Rightarrow\mathrm{a}\in\mathrm{Z}\:\mathrm{but}\:\mathrm{adh}\left(\mathrm{Z}−\left\{\mathrm{a}\right\}\right)=\mathrm{Z}−\left\{\mathrm{a}\right\}\Rightarrow\mathrm{a}\in\mathrm{Z}−\left\{\mathrm{a}\right\}\:\mathrm{absurd} \\ $$$$\mathrm{b}=\left\{\right\}\:\mathrm{empty}\:\mathrm{set} \\ $$$$\mathrm{we}\:\mathrm{will}\:\mathrm{zhow}\:\mathrm{that}\:\mathrm{is}\:\mathbb{R} \\ $$$$\mathrm{we}\:\mathrm{see}\:\mathrm{that}\:\forall\mathrm{n}\in\mathrm{IN}\:\:\left(\sqrt{\mathrm{2}}\right)^{\frac{\mathrm{1}}{\mathrm{n}}} \in\mathrm{IR}−\left\{\mathrm{Q}\right\} \\ $$$$\mathrm{suppose}\:\mathrm{inver}\Rightarrow\left(\sqrt{\mathrm{2}}\right)^{\frac{\mathrm{1}}{\mathrm{n}}} =\frac{\mathrm{a}}{\mathrm{b}}\Rightarrow\sqrt{\mathrm{2}}=\frac{\mathrm{a}^{\mathrm{n}} }{\mathrm{b}^{\mathrm{n}} }\in\mathrm{Q}\:\mathrm{aburde}\: \\ $$$$\mathrm{u}_{\mathrm{n}} \:\mathrm{s}.\left(\sqrt{\mathrm{2}}\right)^{\frac{\mathrm{1}}{\mathrm{n}}} .\mathrm{n}\in\mathrm{IN}^{\ast} .\in\mathrm{IR}−\left\{\mathrm{Q}\right\}\:,\mathrm{s}\in\mathrm{Q} \\ $$$$\mathrm{u}_{\mathrm{n}} \rightarrow\mathrm{s}\in\mathrm{Q}\Rightarrow\mathrm{for}\:\mathrm{C}=\mathrm{IR}−\left\{\mathrm{Q}\right\}\cup\mathrm{Q}=\mathrm{IR} \\ $$$$\mathrm{for}\:\mathrm{this}\:\mathrm{we}\:\mathrm{must}\:\mathrm{show}\:\mathrm{that}\:\forall\mathrm{x}\in\mathrm{IR}\:\exists\mathrm{u}_{\mathrm{n}} \in\mathrm{IR}−\left\{\mathrm{Q}\cup\left\{\mathrm{x}\right\}\right\} \\ $$$$\mathrm{such}\:\mathrm{that}\:\mathrm{u}_{\mathrm{n}} \rightarrow\mathrm{x} \\ $$$$\mathrm{if}\:\mathrm{x}\in\mathrm{Q} \\ $$$$\mathrm{just}\:\mathrm{put}\:\mathrm{u}_{\mathrm{n}} =\left(\sqrt{\mathrm{2}}\right)^{\frac{\mathrm{1}}{\mathrm{n}}} .\mathrm{x}\rightarrow\mathrm{x} \\ $$$$\mathrm{and}\:\forall\mathrm{n}\in\mathbb{N}^{\ast} \mathrm{un}\notin\mathrm{IR}−\left\{\mathrm{Q}\right\} \\ $$$$\mathrm{x}\notin\mathrm{Q}\Rightarrow\mathrm{x}\in\mathrm{IR}−\left\{\mathrm{Q}\right\}\:\mathrm{mor}\:\mathrm{difficult} \\ $$$$\mathrm{u}_{\mathrm{n}} =\begin{cases}{\mathrm{x}−\mathrm{1}+\left(\sqrt{\mathrm{2}}\right)^{\frac{\mathrm{1}}{\mathrm{n}}} ,\mathrm{if}\:\mathrm{x}−\mathrm{1}+\left(\sqrt{\mathrm{2}}\right)^{\frac{\mathrm{1}}{\mathrm{n}}} \notin\mathrm{Q}}\\{\mathrm{x}−\mathrm{1}+\left(\sqrt{\mathrm{3}}\right)^{\frac{\mathrm{1}}{\mathrm{n}}} \:\:\mathrm{else}}\end{cases} \\ $$$$\mathrm{suppose}\:\exists_{\mathrm{n}} \mathrm{for}\:\mathrm{witch}\:\mathrm{x}−\mathrm{1}+\left(\sqrt{\mathrm{3}}\right)^{\frac{\mathrm{1}}{\mathrm{n}}} =\frac{\mathrm{a}}{\mathrm{b}}\Rightarrow \\ $$$$\mathrm{oand}\:\mathrm{x}−\mathrm{1}+\left(\sqrt{\mathrm{2}}\right)^{\frac{\mathrm{1}}{\mathrm{n}}} =\frac{\mathrm{c}}{\mathrm{d}}\Rightarrow\frac{\mathrm{a}}{\mathrm{b}}−\left(\sqrt{\mathrm{3}}\right)^{\frac{\mathrm{1}}{\mathrm{n}}} +\left(\sqrt{\mathrm{2}}\right)_{} ^{\frac{\mathrm{1}}{\mathrm{n}}} =\frac{\mathrm{c}}{\mathrm{d}} \\ $$$$\Rightarrow\exists_{\mathrm{n}} \in\mathbb{N}^{\ast} \mathrm{such}\:\mathrm{that}\:\left(\sqrt{\mathrm{2}}\right)^{\frac{\mathrm{1}}{\mathrm{n}}} −\left(\sqrt{\mathrm{3}}\right)^{\frac{\mathrm{1}}{\mathrm{n}}} \in\mathrm{Q} \\ $$$$\mathrm{absurd}\:\mathrm{U}_{\mathrm{n}\:} \mathrm{well}\:\mathrm{defind}\:\rightarrow\mathrm{x} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com