Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 86958 by abdomathmax last updated on 01/Apr/20

calculate Σ_(n=1) ^∞  (((−1)^n )/(n^3 (n+1)^2 ))

calculaten=1(1)nn3(n+1)2

Commented by mathmax by abdo last updated on 04/Apr/20

let decompose F(x)=(1/(x^3 (x+1)^2 )) ⇒  F(x)=(a/x)+(b/x^2 ) +(c/x^3 ) +(d/(x+1)) +(e/((x+1)^2 ))  c=1  and e =−1 ⇒ F(x)=(a/x) +(b/x^2 )+(1/x^3 )+(d/(x+1))−(1/((x+1)^2 ))  lim_(x→+∞)  xF(x)=0 =a+d ⇒d=−a ⇒  F(x)=(a/x) +(b/x^2 ) +(1/x^3 )−(a/(x+1))−(1/((x+1)^2 ))  F(1) =(1/4) =a+b+1−(a/2)−(1/4) ⇒1 =4a+4b−2a−1 ⇒  2a+4b =2 ⇒a +2b =1  F(−2) =−(1/8) =−(a/2)+(b/4)−(1/8) +a−1 ⇒  −1 =−4a +2b−1+8a−8 ⇒0 =4a+2b −8 ⇒  2a+b−4 =0 ⇒2(1−2b)+b−4 =0 ⇒2−4b+b−4 =0 ⇒  −2b−2 =0 ⇒b=−1 ⇒a =1−2(−1) =1 ⇒  F(x)=(1/x)−(1/x^2 )+(1/x^3 )−(1/(x+1))−(1/((x+1)^2 )) ⇒  S =Σ_(n=1) ^∞  (−1)^n F(n)   =Σ_(n=1) ^∞  (((−1)^n )/n)−Σ_(n=1) ^∞  (((−1)^n )/n^2 ) +Σ_(n=1) ^∞  (((−1)^n )/n^3 )−Σ_(n=1) ^∞  (((−1)^n )/(n+1))  −Σ_(n=1) ^∞  (((−1)^n )/((n+1)^2 ))  we have  Σ_(n=1) ^∞  (((−1)^n )/n) =−ln(2)  let δ(x)=Σ_(n=1) ^∞  (((−1)^n )/n^x )  we have δ(x) =(2^(1−x) −1)ξ(x)  Σ_(n=1) ^∞  (((−1)^n )/n^2 ) =δ(2)=(2^(−1) −1)ξ(2) =−(1/2)×(π^2 /6) =−(π^2 /(12))  Σ_(n=1) ^∞  (((−1)^n )/n^3 ) =(2^(1−3) −1)ξ(3) =((1/4)−1)ξ(3) =−(3/4)ξ(3)  Σ_(n=1) ^∞  (((−1)^n )/(n+1)) =Σ_(n=2) ^∞  (((−1)^(n−1) )/n) =−Σ_(n=2) ^∞  (((−1)^n )/n)  =−(Σ_(n=1) ^∞  (((−1)^n )/n) +1) =−(−ln(2)+1) =ln(2)−1  Σ_(n=1) ^∞  (((−1)^n )/((n+1)^2 )) =Σ_(n=2) ^∞  (((−1)^(n−1) )/n^2 ) =−Σ_(n=2) ^∞  (((−1)^n )/n^2 )  =−( Σ_(n=1) ^∞  (((−1)^n )/n^2 ) +1) =−(−(π^2 /(12))+1) =(π^2 /(12))−1 ⇒  S =−ln(2) +(π^2 /(12))−(3/4)ξ(3)−ln(2)+1 −(π^2 /(12)) +1 ⇒  S =2−2ln(2)−(3/4)ξ(3)

letdecomposeF(x)=1x3(x+1)2F(x)=ax+bx2+cx3+dx+1+e(x+1)2c=1ande=1F(x)=ax+bx2+1x3+dx+11(x+1)2limx+xF(x)=0=a+dd=aF(x)=ax+bx2+1x3ax+11(x+1)2F(1)=14=a+b+1a2141=4a+4b2a12a+4b=2a+2b=1F(2)=18=a2+b418+a11=4a+2b1+8a80=4a+2b82a+b4=02(12b)+b4=024b+b4=02b2=0b=1a=12(1)=1F(x)=1x1x2+1x31x+11(x+1)2S=n=1(1)nF(n)=n=1(1)nnn=1(1)nn2+n=1(1)nn3n=1(1)nn+1n=1(1)n(n+1)2wehaven=1(1)nn=ln(2)letδ(x)=n=1(1)nnxwehaveδ(x)=(21x1)ξ(x)n=1(1)nn2=δ(2)=(211)ξ(2)=12×π26=π212n=1(1)nn3=(2131)ξ(3)=(141)ξ(3)=34ξ(3)n=1(1)nn+1=n=2(1)n1n=n=2(1)nn=(n=1(1)nn+1)=(ln(2)+1)=ln(2)1n=1(1)n(n+1)2=n=2(1)n1n2=n=2(1)nn2=(n=1(1)nn2+1)=(π212+1)=π2121S=ln(2)+π21234ξ(3)ln(2)+1π212+1S=22ln(2)34ξ(3)

Terms of Service

Privacy Policy

Contact: info@tinkutara.com