All Questions Topic List
Relation and Functions Questions
Previous in All Question Next in All Question
Previous in Relation and Functions Next in Relation and Functions
Question Number 86958 by abdomathmax last updated on 01/Apr/20
calculate∑n=1∞(−1)nn3(n+1)2
Commented by mathmax by abdo last updated on 04/Apr/20
letdecomposeF(x)=1x3(x+1)2⇒F(x)=ax+bx2+cx3+dx+1+e(x+1)2c=1ande=−1⇒F(x)=ax+bx2+1x3+dx+1−1(x+1)2limx→+∞xF(x)=0=a+d⇒d=−a⇒F(x)=ax+bx2+1x3−ax+1−1(x+1)2F(1)=14=a+b+1−a2−14⇒1=4a+4b−2a−1⇒2a+4b=2⇒a+2b=1F(−2)=−18=−a2+b4−18+a−1⇒−1=−4a+2b−1+8a−8⇒0=4a+2b−8⇒2a+b−4=0⇒2(1−2b)+b−4=0⇒2−4b+b−4=0⇒−2b−2=0⇒b=−1⇒a=1−2(−1)=1⇒F(x)=1x−1x2+1x3−1x+1−1(x+1)2⇒S=∑n=1∞(−1)nF(n)=∑n=1∞(−1)nn−∑n=1∞(−1)nn2+∑n=1∞(−1)nn3−∑n=1∞(−1)nn+1−∑n=1∞(−1)n(n+1)2wehave∑n=1∞(−1)nn=−ln(2)letδ(x)=∑n=1∞(−1)nnxwehaveδ(x)=(21−x−1)ξ(x)∑n=1∞(−1)nn2=δ(2)=(2−1−1)ξ(2)=−12×π26=−π212∑n=1∞(−1)nn3=(21−3−1)ξ(3)=(14−1)ξ(3)=−34ξ(3)∑n=1∞(−1)nn+1=∑n=2∞(−1)n−1n=−∑n=2∞(−1)nn=−(∑n=1∞(−1)nn+1)=−(−ln(2)+1)=ln(2)−1∑n=1∞(−1)n(n+1)2=∑n=2∞(−1)n−1n2=−∑n=2∞(−1)nn2=−(∑n=1∞(−1)nn2+1)=−(−π212+1)=π212−1⇒S=−ln(2)+π212−34ξ(3)−ln(2)+1−π212+1⇒S=2−2ln(2)−34ξ(3)
Terms of Service
Privacy Policy
Contact: info@tinkutara.com