Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 72021 by mathmax by abdo last updated on 23/Oct/19

calculate interms of n  U_n =Σ_(1≤i<j≤n)  sin(((iπ)/n))sin(((jπ)/n))

calculateintermsofnUn=1i<jnsin(iπn)sin(jπn)

Commented bymathmax by abdo last updated on 26/Oct/19

we have (Σ_(i=1) ^n sin(x_i ))^2 =Σ_(i=1) ^n  sin^2 (x_i ) +2Σ_(1≤i<j≤n)  sin(  x_i )sin(x_j )  let x_i =((iπ)/n) ⇒(Σ_(i=1) ^n sin(((iπ)/n))^2 )=Σ_(i=1) ^n sin^2 (((iπ)/n))+2Σ_(1≤i<j≤n) sin(((iπ)/n))sin(((jπ)/n))  ⇒Σ_(1≤i<j≤j) sin(((iπ)/n))sin(((jπ)/n))  =(1/2){ (Σ_(i=1) ^n  sin(((iπ)/n)))^2 −Σ_(i=1) ^n  sin^2 (((iπ)/n))}  let A_n =Σ_(k=1) ^n sin(((kπ)/n)) ⇒A_n =Im(Σ_(k=0) ^n  e^((ikπ)/n) ) and  Σ_(i=0) ^n  e^((ikπ)/n)  =Σ_(i.0) ^n  (e^(i(π/n)) )^k  =((1−(e^(i(π/n)) )^(n+1) )/(1−e^((iπ)/n) )) =((1−e^(i(((n+1)π)/n)) )/(1−e^((iπ)/n) ))  =((1−cos((((n+1)π)/n))−isin((((n+1)π)/n)))/(1−cos((π/n))−isin((π/n))))  =((2sin^2 ((((n+1)π)/(2n)))−2isin((((n+1)π)/(2n)))cos((((n+1)π)/(2n))))/(2sin^2 ((π/(2n)))−2isin((π/(2n)))cos((π/(2n)))))   =((−isin((((n+1)π)/(2n)))e^(i(((n+1)π)/(2n))) )/(−isin((π/(2n)))e^((iπ)/(2n)) )) =((sin((((n+1)π)/(2n))))/(sin((π/(2n)))))(i) ⇒  A_n =((sin((((n+1)π)/(2n))))/(sin((π/(2n)))))  let  calculate Σ_(k=1) ^n  sin^2 (((kπ)/n))...be continued...

wehave(i=1nsin(xi))2=i=1nsin2(xi)+21i<jnsin(xi)sin(xj) letxi=iπn(i=1nsin(iπn)2)=i=1nsin2(iπn)+21i<jnsin(iπn)sin(jπn) 1i<jjsin(iπn)sin(jπn) =12{(i=1nsin(iπn))2i=1nsin2(iπn)} letAn=k=1nsin(kπn)An=Im(k=0neikπn)and i=0neikπn=i.0n(eiπn)k=1(eiπn)n+11eiπn=1ei(n+1)πn1eiπn =1cos((n+1)πn)isin((n+1)πn)1cos(πn)isin(πn) =2sin2((n+1)π2n)2isin((n+1)π2n)cos((n+1)π2n)2sin2(π2n)2isin(π2n)cos(π2n) =isin((n+1)π2n)ei(n+1)π2nisin(π2n)eiπ2n=sin((n+1)π2n)sin(π2n)(i) An=sin((n+1)π2n)sin(π2n)letcalculatek=1nsin2(kπn)...becontinued...

Commented bymathmax by abdo last updated on 26/Oct/19

we have Σ_(k=1) ^n  sin^2 (((kπ)/n))=Σ_(k=1) ^n ((1−cos(((2kπ)/n)))/2)  =(n/2)−(1/2)Σ_(k=1) ^n  cos(((2kπ)/n)) and  Σ_(k=1) ^n  cos(((2kπ)/n))=Re(Σ_(k=0) ^n  e^((i2kπ)/n) −1)  Σ_(k=0) ^n  e^((i2kπ)/n)  =((1−(e^((i2π)/n) )^(n+1) )/(1−e^((i2π)/n) )) =((1−e^((i(2π)(n+1))/n) )/(1−e^((i2π)/n) ))  =((1−cos(((2(n+1)π)/n))−isin(((2(n+1)π)/n)))/(1−cos(((2π)/n))−isin(((2π)/n))))  =((2sin^2 ((((n+1)π)/n))−2isin((((n+1)π)/n))cos((((n+1)π)/n)))/(2sin^2 ((π/n))−2isin((π/n))cos((π/n))))  =((−isin((((n+1)π)/n))e^(i(((n+1)π)/n)) )/(−isin((π/n))e^((iπ)/n) )) =((sin((((n+1)π)/n)))/(sin((π/n))))×(−1) ⇒  Σ_(k=1) ^n  cos(((2kπ)/n))=−1−((sin((((n+1)π)/n)))/(sin((π/n)))) =−1−((sin(π+(π/n)))/(sin((π/n))))  =−1+1 =0 ⇒Σ_(k=1) ^n  sin^2 (((kπ)/n))=(n/2) ⇒  Σ_(1≤i<j≤n)    sin(((iπ)/n))sin(((jπ)/n))  =(1/2){  ((sin^2 ((((n+1)π)/(2n))))/(sin^2 ((π/(2n))))) −(n^2 /4)}

wehavek=1nsin2(kπn)=k=1n1cos(2kπn)2 =n212k=1ncos(2kπn)and k=1ncos(2kπn)=Re(k=0nei2kπn1) k=0nei2kπn=1(ei2πn)n+11ei2πn=1ei(2π)(n+1)n1ei2πn =1cos(2(n+1)πn)isin(2(n+1)πn)1cos(2πn)isin(2πn) =2sin2((n+1)πn)2isin((n+1)πn)cos((n+1)πn)2sin2(πn)2isin(πn)cos(πn) =isin((n+1)πn)ei(n+1)πnisin(πn)eiπn=sin((n+1)πn)sin(πn)×(1) k=1ncos(2kπn)=1sin((n+1)πn)sin(πn)=1sin(π+πn)sin(πn) =1+1=0k=1nsin2(kπn)=n2 1i<jnsin(iπn)sin(jπn) =12{sin2((n+1)π2n)sin2(π2n)n24}

Terms of Service

Privacy Policy

Contact: info@tinkutara.com