Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 72023 by mathmax by abdo last updated on 23/Oct/19

find lim_(n→+∞)    Σ_(1≤i<j≤n)   (1/((ij)^2 ))

findlimn+1i<jn1(ij)2

Commented bymathmax by abdo last updated on 24/Oct/19

wehave (Σ_(i=1) ^n x_i )^2 =Σ_(i=1) ^n  x_i ^2  +2Σ_(1≤i<j≤n)   x_i x_j   let x_i =(1/i^2 ) ⇒(Σ_(i=1) ^n  (1/i^2 ))^2 =Σ_(i=1) ^n  (1/i^4 ) +2Σ_(1≤i<j≤n)   (1/i^2 )×(1/j^2 )  ⇒lim_(n→+∞) (Σ_(i=1) ^n  (1/i^2 ))^2 =lim_(n→+∞) Σ_(i=1) ^n  (1/i^4 ) +2lim_(n→+∞) Σ_(1≤i<j≤n) (1/((ij)^2 )) ⇒  2lim_(n→+∞)  Σ_(1≤i<j≤n)   (1/((ij)^2 ))  =(Σ_(i=1) ^∞ (1/i^2 ))^2 −Σ_(n=1) ^∞  (1/i^4 )  =((π^2 /6))^2 −ξ(4) =(π^4 /(36)) −ξ(4) ⇒  lim_(n→+∞) Σ_(1≤i<j≤n)   (1/((ij)^2 )) =(π^4 /(72)) −((ξ(4))/2)

wehave(i=1nxi)2=i=1nxi2+21i<jnxixj letxi=1i2(i=1n1i2)2=i=1n1i4+21i<jn1i2×1j2 limn+(i=1n1i2)2=limn+i=1n1i4+2limn+1i<jn1(ij)2 2limn+1i<jn1(ij)2=(i=11i2)2n=11i4 =(π26)2ξ(4)=π436ξ(4) limn+1i<jn1(ij)2=π472ξ(4)2

Answered by mind is power last updated on 23/Oct/19

Σ_(1≤i<j≤n) =Σ_(j=2) ^n (1/j^2 )Σ_(i=1) ^(j−1) (1/i^2 )  Σ_(1≤j<i≤n) (1/((ij)^2 ))=Σ_(1≤i<j≤n) (1/((ij)^2 ))  Σ_(j,i=1) ^n (1/((ij)^2 ))=Σ_(i=1) ^n (1/i^2 ).Σ_(j=1) ^n (1/j^2 )  Σ_(1≤j<i≤n) (1/((ij)^2 ))+Σ_(1≤i<j≤n) (1/((ij)^2 ))+Σ_(i=j=1) ^n (1/((ij)^2 ))+Σ_(i=1) ^n (1/i^2 )Σ_(j=1) ^n (1/j^2 )    2Σ_(1≤i<j≤n) (1/((ij)^2 ))=Σ_(i=1) ^n (1/i^2 ).Σ_(j.1) ^n (1/j^2 )−Σ_1 ^n (1/j^4 )  2Σ_(1≤i<j≤n) (1/((ij)^2 ))=(ζ(2))^2 −ζ(4)⇒  Σ_(1≤i<j≤n) (1/((ij)^2 ))=((ζ(2)^2 −ζ(4))/2)

1i<jn=nj=21j2j1i=11i2 1j<in1(ij)2=1i<jn1(ij)2 nj,i=11(ij)2=ni=11i2.nj=11j2 1j<in1(ij)2+1i<jn1(ij)2+ni=j=11(ij)2+ni=11i2nj=11j2 21i<jn1(ij)2=ni=11i2.nj.11j2n11j4 21i<jn1(ij)2=(ζ(2))2ζ(4) 1i<jn1(ij)2=ζ(2)2ζ(4)2

Commented bygunawan last updated on 23/Oct/19

you are Amazing

youareAmazing

Commented bymind is power last updated on 23/Oct/19

thanx sir

thanxsir

Terms of Service

Privacy Policy

Contact: info@tinkutara.com