Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 72024 by mathmax by abdo last updated on 23/Oct/19

calculate lim_(n→+∞)    ∫_0 ^n (1−(x/n))^n ln(1+x)dx

$${calculate}\:{lim}_{{n}\rightarrow+\infty} \:\:\:\int_{\mathrm{0}} ^{{n}} \left(\mathrm{1}−\frac{{x}}{{n}}\right)^{{n}} {ln}\left(\mathrm{1}+{x}\right){dx} \\ $$

Commented by mathmax by abdo last updated on 31/Oct/19

A_n =∫_0 ^n (1−(x/n))^n ln(1+x)dx ⇒A_n =∫_R (1−(x/n))^n ln(1+x)χ_([0,n[) (x)dx  let f_n (x)=(1−(x/n))^n ln(1+x)χ_([0,n[) (x)dx  we  have  f_n  →^(cs)    f(x)=e^(−x) ln(1+x)   on[0,+∞[   and ∣f_n (x)∣<f(x)  theorem of convergence dominee give   lim_(n→+∞)  A_n =∫_R lim_(n→+∞) f_n (x)dx =∫_0 ^∞  e^(−x) ln(1+x)dx  =_(1+x=t)    ∫_1 ^(+∞)  e^(−(t−1)) ln(t)dt =e ∫_1 ^(+∞)  e^(−t) ln(t)dt  =e ( ∫_1 ^0  e^(−t) ln(t)dt +∫_0 ^(+∞) e^(−t) ln(t)dt)  =−e ∫_0 ^1 e^(−t) ln(t)dt +e ∫_0 ^∞  e^(−t) ln(t)dt  =−eγ −e ∫_0 ^1 e^(−t) ln(t)dt .....be continued...

$${A}_{{n}} =\int_{\mathrm{0}} ^{{n}} \left(\mathrm{1}−\frac{{x}}{{n}}\right)^{{n}} {ln}\left(\mathrm{1}+{x}\right){dx}\:\Rightarrow{A}_{{n}} =\int_{{R}} \left(\mathrm{1}−\frac{{x}}{{n}}\right)^{{n}} {ln}\left(\mathrm{1}+{x}\right)\chi_{\left[\mathrm{0},{n}\left[\right.\right.} \left({x}\right){dx} \\ $$$${let}\:{f}_{{n}} \left({x}\right)=\left(\mathrm{1}−\frac{{x}}{{n}}\right)^{{n}} {ln}\left(\mathrm{1}+{x}\right)\chi_{\left[\mathrm{0},{n}\left[\right.\right.} \left({x}\right){dx}\:\:{we}\:\:{have} \\ $$$${f}_{{n}} \:\rightarrow^{{cs}} \:\:\:{f}\left({x}\right)={e}^{−{x}} {ln}\left(\mathrm{1}+{x}\right)\:\:\:{on}\left[\mathrm{0},+\infty\left[\:\:\:{and}\:\mid{f}_{{n}} \left({x}\right)\mid<{f}\left({x}\right)\right.\right. \\ $$$${theorem}\:{of}\:{convergence}\:{dominee}\:{give}\: \\ $$$${lim}_{{n}\rightarrow+\infty} \:{A}_{{n}} =\int_{{R}} {lim}_{{n}\rightarrow+\infty} {f}_{{n}} \left({x}\right){dx}\:=\int_{\mathrm{0}} ^{\infty} \:{e}^{−{x}} {ln}\left(\mathrm{1}+{x}\right){dx} \\ $$$$=_{\mathrm{1}+{x}={t}} \:\:\:\int_{\mathrm{1}} ^{+\infty} \:{e}^{−\left({t}−\mathrm{1}\right)} {ln}\left({t}\right){dt}\:={e}\:\int_{\mathrm{1}} ^{+\infty} \:{e}^{−{t}} {ln}\left({t}\right){dt} \\ $$$$={e}\:\left(\:\int_{\mathrm{1}} ^{\mathrm{0}} \:{e}^{−{t}} {ln}\left({t}\right){dt}\:+\int_{\mathrm{0}} ^{+\infty} {e}^{−{t}} {ln}\left({t}\right){dt}\right) \\ $$$$=−{e}\:\int_{\mathrm{0}} ^{\mathrm{1}} {e}^{−{t}} {ln}\left({t}\right){dt}\:+{e}\:\int_{\mathrm{0}} ^{\infty} \:{e}^{−{t}} {ln}\left({t}\right){dt} \\ $$$$=−{e}\gamma\:−{e}\:\int_{\mathrm{0}} ^{\mathrm{1}} {e}^{−{t}} {ln}\left({t}\right){dt}\:.....{be}\:{continued}... \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com