Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 72046 by aliesam last updated on 23/Oct/19

Commented by mathmax by abdo last updated on 26/Oct/19

let U_n =∫_0 ^1 nln(1+((x/n))^α )dx ⇒U_n =_((x/n)=t)    ∫_0 ^(1/n) nln(1+t^α )ndt  =n^2 ∫_0 ^(1/n)  ln(1+t^α )dt   but  0<t<(1/n) and n→+∞  ln(1+t^α )∼t^α  ⇒  U_n ∼n^2 ∫_0 ^(1/n) t^α dt =n^2 [(1/(α+1))t^(α+1) ]_0 ^(1/n) =(n^2 /(α+1))((1/n))^(α+1) =(1/((α+1)n^(α+1−2) ))  =(1/((α+1)n^(α−1) )) =(n^(1−α) /((α+1))) →+∞  because 1−α>0  another way U_n =∫_R  nln(1+((x/n))^α ) χ_([0,1]) (x)dx=∫_(R )   f_n (x)dx  we have f_n (x)∼n((x/n))^α  =((nx^n )/n^n ) =(x^α /n^(α−1) ) =n^(1−α)  x^α   but 1−α>0 ⇒  f_n (x)→+∞ (n→+∞) ⇒lim_(n→+∞)    U_n =+∞

$${let}\:{U}_{{n}} =\int_{\mathrm{0}} ^{\mathrm{1}} {nln}\left(\mathrm{1}+\left(\frac{{x}}{{n}}\right)^{\alpha} \right){dx}\:\Rightarrow{U}_{{n}} =_{\frac{{x}}{{n}}={t}} \:\:\:\int_{\mathrm{0}} ^{\frac{\mathrm{1}}{{n}}} {nln}\left(\mathrm{1}+{t}^{\alpha} \right){ndt} \\ $$$$={n}^{\mathrm{2}} \int_{\mathrm{0}} ^{\frac{\mathrm{1}}{{n}}} \:{ln}\left(\mathrm{1}+{t}^{\alpha} \right){dt}\:\:\:{but}\:\:\mathrm{0}<{t}<\frac{\mathrm{1}}{{n}}\:{and}\:{n}\rightarrow+\infty\:\:{ln}\left(\mathrm{1}+{t}^{\alpha} \right)\sim{t}^{\alpha} \:\Rightarrow \\ $$$${U}_{{n}} \sim{n}^{\mathrm{2}} \int_{\mathrm{0}} ^{\frac{\mathrm{1}}{{n}}} {t}^{\alpha} {dt}\:={n}^{\mathrm{2}} \left[\frac{\mathrm{1}}{\alpha+\mathrm{1}}{t}^{\alpha+\mathrm{1}} \right]_{\mathrm{0}} ^{\frac{\mathrm{1}}{{n}}} =\frac{{n}^{\mathrm{2}} }{\alpha+\mathrm{1}}\left(\frac{\mathrm{1}}{{n}}\right)^{\alpha+\mathrm{1}} =\frac{\mathrm{1}}{\left(\alpha+\mathrm{1}\right){n}^{\alpha+\mathrm{1}−\mathrm{2}} } \\ $$$$=\frac{\mathrm{1}}{\left(\alpha+\mathrm{1}\right){n}^{\alpha−\mathrm{1}} }\:=\frac{{n}^{\mathrm{1}−\alpha} }{\left(\alpha+\mathrm{1}\right)}\:\rightarrow+\infty\:\:{because}\:\mathrm{1}−\alpha>\mathrm{0} \\ $$$${another}\:{way}\:{U}_{{n}} =\int_{{R}} \:{nln}\left(\mathrm{1}+\left(\frac{{x}}{{n}}\right)^{\alpha} \right)\:\chi_{\left[\mathrm{0},\mathrm{1}\right]} \left({x}\right){dx}=\int_{{R}\:} \:\:{f}_{{n}} \left({x}\right){dx} \\ $$$${we}\:{have}\:{f}_{{n}} \left({x}\right)\sim{n}\left(\frac{{x}}{{n}}\right)^{\alpha} \:=\frac{{nx}^{{n}} }{{n}^{{n}} }\:=\frac{{x}^{\alpha} }{{n}^{\alpha−\mathrm{1}} }\:={n}^{\mathrm{1}−\alpha} \:{x}^{\alpha} \:\:{but}\:\mathrm{1}−\alpha>\mathrm{0}\:\Rightarrow \\ $$$${f}_{{n}} \left({x}\right)\rightarrow+\infty\:\left({n}\rightarrow+\infty\right)\:\Rightarrow{lim}_{{n}\rightarrow+\infty} \:\:\:{U}_{{n}} =+\infty \\ $$$$ \\ $$

Commented by mathmax by abdo last updated on 26/Oct/19

forgive f_n (x)∼((nx^α )/n^α )

$${forgive}\:{f}_{{n}} \left({x}\right)\sim\frac{{nx}^{\alpha} }{{n}^{\alpha} } \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com