Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 72062 by ozodbek last updated on 23/Oct/19

Commented by ozodbek last updated on 24/Oct/19

solve please

$$\mathrm{solve}\:\mathrm{please}\: \\ $$

Commented by mathmax by abdo last updated on 24/Oct/19

complex method    z^5 +1 =0 ⇔z^5 =−1=e^((2k+1)π)  so the roots are  z_k =e^(i(((2k+1)π)/5))   with 0≤k≤4 ⇒(1/(x^5 +1)) =(1/(Π_(k=0) ^4 (x−z_k )))  =Σ_(k=0) ^4  (α_k /(x−z_k ))  and α_k =(1/(5z_k ^4 )) =(z_k /(5z_k ^5 )) =−(z_k /5) ⇒  (1/(x^5 +1)) =−(1/5)Σ_(k=0) ^4  (z_k /(x−z_k )) =−(1/5){(z_o /(x−z_0 )) +(z_1 /(x−z_1 )) +(z_2 /(x−z_2 )) +(z_3 /(x−z_3 ))+(z_4 /(x−z_4 ))} ⇒  ∫   (dx/(x^5 +1)) =−(z_0 /5)ln(x−z_0 )−(z_1 /5)ln(x−z_1 )−(z_2 /5)ln(x−z_2 )−(z_3 /5)ln(x−z_2 )  −(z_4 /5)ln(x−z_2 )+c  z_0 =e^((iπ)/5)   , z_1 =e^(i((3π)/5))   ,z_2 =−1 , z_3 =e^((i7π)/5)   ,z_4 =e^(i((9π)/5))

$${complex}\:{method}\:\:\:\:{z}^{\mathrm{5}} +\mathrm{1}\:=\mathrm{0}\:\Leftrightarrow{z}^{\mathrm{5}} =−\mathrm{1}={e}^{\left(\mathrm{2}{k}+\mathrm{1}\right)\pi} \:{so}\:{the}\:{roots}\:{are} \\ $$$${z}_{{k}} ={e}^{{i}\frac{\left(\mathrm{2}{k}+\mathrm{1}\right)\pi}{\mathrm{5}}} \:\:{with}\:\mathrm{0}\leqslant{k}\leqslant\mathrm{4}\:\Rightarrow\frac{\mathrm{1}}{{x}^{\mathrm{5}} +\mathrm{1}}\:=\frac{\mathrm{1}}{\prod_{{k}=\mathrm{0}} ^{\mathrm{4}} \left({x}−{z}_{{k}} \right)} \\ $$$$=\sum_{{k}=\mathrm{0}} ^{\mathrm{4}} \:\frac{\alpha_{{k}} }{{x}−{z}_{{k}} }\:\:{and}\:\alpha_{{k}} =\frac{\mathrm{1}}{\mathrm{5}{z}_{{k}} ^{\mathrm{4}} }\:=\frac{{z}_{{k}} }{\mathrm{5}{z}_{{k}} ^{\mathrm{5}} }\:=−\frac{{z}_{{k}} }{\mathrm{5}}\:\Rightarrow \\ $$$$\frac{\mathrm{1}}{{x}^{\mathrm{5}} +\mathrm{1}}\:=−\frac{\mathrm{1}}{\mathrm{5}}\sum_{{k}=\mathrm{0}} ^{\mathrm{4}} \:\frac{{z}_{{k}} }{{x}−{z}_{{k}} }\:=−\frac{\mathrm{1}}{\mathrm{5}}\left\{\frac{{z}_{{o}} }{{x}−{z}_{\mathrm{0}} }\:+\frac{{z}_{\mathrm{1}} }{{x}−{z}_{\mathrm{1}} }\:+\frac{{z}_{\mathrm{2}} }{{x}−{z}_{\mathrm{2}} }\:+\frac{{z}_{\mathrm{3}} }{{x}−{z}_{\mathrm{3}} }+\frac{{z}_{\mathrm{4}} }{{x}−{z}_{\mathrm{4}} }\right\}\:\Rightarrow \\ $$$$\int\:\:\:\frac{{dx}}{{x}^{\mathrm{5}} +\mathrm{1}}\:=−\frac{{z}_{\mathrm{0}} }{\mathrm{5}}{ln}\left({x}−{z}_{\mathrm{0}} \right)−\frac{{z}_{\mathrm{1}} }{\mathrm{5}}{ln}\left({x}−{z}_{\mathrm{1}} \right)−\frac{{z}_{\mathrm{2}} }{\mathrm{5}}{ln}\left({x}−{z}_{\mathrm{2}} \right)−\frac{{z}_{\mathrm{3}} }{\mathrm{5}}{ln}\left({x}−{z}_{\mathrm{2}} \right) \\ $$$$−\frac{{z}_{\mathrm{4}} }{\mathrm{5}}{ln}\left({x}−{z}_{\mathrm{2}} \right)+{c} \\ $$$${z}_{\mathrm{0}} ={e}^{\frac{{i}\pi}{\mathrm{5}}} \:\:,\:{z}_{\mathrm{1}} ={e}^{{i}\frac{\mathrm{3}\pi}{\mathrm{5}}} \:\:,{z}_{\mathrm{2}} =−\mathrm{1}\:,\:{z}_{\mathrm{3}} ={e}^{\frac{{i}\mathrm{7}\pi}{\mathrm{5}}} \:\:,{z}_{\mathrm{4}} ={e}^{{i}\frac{\mathrm{9}\pi}{\mathrm{5}}} \\ $$

Answered by ajfour last updated on 24/Oct/19

x^5 +1=(x+1)(x+a)(x+b)(x+c)(x+d)  I=kln ∣x+1∣+ΣAln ∣x+a∣     k=(1/((a−1)(b−1)(c−1)(d−1)))    A=(1/((1−a)(b−a)(c−a)(d−a)))    a=e^(2iπ/5)  , b=e^(4iπ/5) , c=e^(6iπ/5) , d=e^(8iπ/5) .

$${x}^{\mathrm{5}} +\mathrm{1}=\left({x}+\mathrm{1}\right)\left({x}+{a}\right)\left({x}+{b}\right)\left({x}+{c}\right)\left({x}+{d}\right) \\ $$$${I}={k}\mathrm{ln}\:\mid{x}+\mathrm{1}\mid+\Sigma{A}\mathrm{ln}\:\mid{x}+{a}\mid \\ $$$$\:\:\:{k}=\frac{\mathrm{1}}{\left({a}−\mathrm{1}\right)\left({b}−\mathrm{1}\right)\left({c}−\mathrm{1}\right)\left({d}−\mathrm{1}\right)} \\ $$$$\:\:{A}=\frac{\mathrm{1}}{\left(\mathrm{1}−{a}\right)\left({b}−{a}\right)\left({c}−{a}\right)\left({d}−{a}\right)} \\ $$$$\:\:{a}={e}^{\mathrm{2}{i}\pi/\mathrm{5}} \:,\:{b}={e}^{\mathrm{4}{i}\pi/\mathrm{5}} ,\:{c}={e}^{\mathrm{6}{i}\pi/\mathrm{5}} ,\:{d}={e}^{\mathrm{8}{i}\pi/\mathrm{5}} . \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com