Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 7207 by Tawakalitu. last updated on 16/Aug/16

x^((2x/y))   ×   y^((y/x))   =  4      ............. (i)  xy^((xy + yx))   =  16     ............ (ii)    Find the value of x and y

$${x}^{\left(\mathrm{2}{x}/{y}\right)} \:\:×\:\:\:{y}^{\left({y}/{x}\right)} \:\:=\:\:\mathrm{4}\:\:\:\:\:\:.............\:\left({i}\right) \\ $$$${xy}^{\left({xy}\:+\:{yx}\right)} \:\:=\:\:\mathrm{16}\:\:\:\:\:............\:\left({ii}\right) \\ $$$$ \\ $$$${Find}\:{the}\:{value}\:{of}\:{x}\:{and}\:{y} \\ $$

Commented by Yozzia last updated on 16/Aug/16

ln{x^(2x/y) y^(y/x) }=ln4  ((2x)/y)lnx+(y/x)lny=ln4......(1)  ln{xy^((xy+yx)) }=2ln4  lnx+(xy+yx)lny=2ln4  lnx+2xylny=2ln4............(2)  Let u=lnx, v=lny⇒x=e^u , y=e^v   ⇒(1): 2e^(u−v) u+e^(v−u) v=ln4  (2): u+2e^(u+v) v=2ln4  From (2): ve^v =(1/2){2ln4−u}e^(2ln4−u) ×e^(−2ln4)   ve^v =(1/(32)){2ln4−u}e^(2ln4−u)   32ve^v ={ln16−u}e^(ln16−u)   ⇒ln16−u=W(32ve^v )  u=ln16−W(32ve^v )  In (1): 2e^(2u) u+e^(2v) v=e^(u+v) ln4  2e^(2ln16−2W(32ve^v )) +ve^(2v) =e^(ln16−W(32ve^v )+v) ln4  2e^(ln256) e^(−2W(32ve^v )) +ve^(2v) =e^(ln16) e^(−W(32ve^v )) e^v ln4  512e^(−2W(32ve^v )) +ve^(2v) =(16ln4)e^v e^(−W(32ve^v ))   ((512e^(−2v) {W(32ve^v )}^2 )/(1024v^2 ))+ve^(2v) =((16ln4)/(32v))×e^(−v) W(32ve^v )  (({W(32ve^v )}^2 )/(2v^2 ))+ve^(4v) =((ln4)/(2v))×e^v W(32ve^v )  {W(32ve^v )}^2 +2v^3 e^(4v) =ve^v W(32ve^v )ln4  {W(32ve^v )}^2 −2(ve^v ln2)W(32ve^v )+v^2 e^(2v) ln^2 2=v^2 e^(2v) ln^2 2−2v^3 e^(4v)   [W(32ve^v )−ve^v ln2]^2 =v^2 e^(2v) (ln^2 2−2ve^(2v) )  ⇒W(32ve^v )−ve^v ln2=±ve^v (√(ln^2 2−2ve^(2v) ))  W(32ve^v )=ve^v (ln2±(√(ln^2 2−2ve^(2v) )))

$${ln}\left\{{x}^{\mathrm{2}{x}/{y}} {y}^{{y}/{x}} \right\}={ln}\mathrm{4} \\ $$$$\frac{\mathrm{2}{x}}{{y}}{lnx}+\frac{{y}}{{x}}{lny}={ln}\mathrm{4}......\left(\mathrm{1}\right) \\ $$$${ln}\left\{{xy}^{\left({xy}+{yx}\right)} \right\}=\mathrm{2}{ln}\mathrm{4} \\ $$$${lnx}+\left({xy}+{yx}\right){lny}=\mathrm{2}{ln}\mathrm{4} \\ $$$${lnx}+\mathrm{2}{xylny}=\mathrm{2}{ln}\mathrm{4}............\left(\mathrm{2}\right) \\ $$$${Let}\:{u}={lnx},\:{v}={lny}\Rightarrow{x}={e}^{{u}} ,\:{y}={e}^{{v}} \\ $$$$\Rightarrow\left(\mathrm{1}\right):\:\mathrm{2}{e}^{{u}−{v}} {u}+{e}^{{v}−{u}} {v}={ln}\mathrm{4} \\ $$$$\left(\mathrm{2}\right):\:{u}+\mathrm{2}{e}^{{u}+{v}} {v}=\mathrm{2}{ln}\mathrm{4} \\ $$$${From}\:\left(\mathrm{2}\right):\:{ve}^{{v}} =\frac{\mathrm{1}}{\mathrm{2}}\left\{\mathrm{2}{ln}\mathrm{4}−{u}\right\}{e}^{\mathrm{2}{ln}\mathrm{4}−{u}} ×{e}^{−\mathrm{2}{ln}\mathrm{4}} \\ $$$${ve}^{{v}} =\frac{\mathrm{1}}{\mathrm{32}}\left\{\mathrm{2}{ln}\mathrm{4}−{u}\right\}{e}^{\mathrm{2}{ln}\mathrm{4}−{u}} \\ $$$$\mathrm{32}{ve}^{{v}} =\left\{{ln}\mathrm{16}−{u}\right\}{e}^{{ln}\mathrm{16}−{u}} \\ $$$$\Rightarrow{ln}\mathrm{16}−{u}={W}\left(\mathrm{32}{ve}^{{v}} \right) \\ $$$${u}={ln}\mathrm{16}−{W}\left(\mathrm{32}{ve}^{{v}} \right) \\ $$$${In}\:\left(\mathrm{1}\right):\:\mathrm{2}{e}^{\mathrm{2}{u}} {u}+{e}^{\mathrm{2}{v}} {v}={e}^{{u}+{v}} {ln}\mathrm{4} \\ $$$$\mathrm{2}{e}^{\mathrm{2}{ln}\mathrm{16}−\mathrm{2}{W}\left(\mathrm{32}{ve}^{{v}} \right)} +{ve}^{\mathrm{2}{v}} ={e}^{{ln}\mathrm{16}−{W}\left(\mathrm{32}{ve}^{{v}} \right)+{v}} {ln}\mathrm{4} \\ $$$$\mathrm{2}{e}^{{ln}\mathrm{256}} {e}^{−\mathrm{2}{W}\left(\mathrm{32}{ve}^{{v}} \right)} +{ve}^{\mathrm{2}{v}} ={e}^{{ln}\mathrm{16}} {e}^{−{W}\left(\mathrm{32}{ve}^{{v}} \right)} {e}^{{v}} {ln}\mathrm{4} \\ $$$$\mathrm{512}{e}^{−\mathrm{2}{W}\left(\mathrm{32}{ve}^{{v}} \right)} +{ve}^{\mathrm{2}{v}} =\left(\mathrm{16}{ln}\mathrm{4}\right){e}^{{v}} {e}^{−{W}\left(\mathrm{32}{ve}^{{v}} \right)} \\ $$$$\frac{\mathrm{512}{e}^{−\mathrm{2}{v}} \left\{{W}\left(\mathrm{32}{ve}^{{v}} \right)\right\}^{\mathrm{2}} }{\mathrm{1024}{v}^{\mathrm{2}} }+{ve}^{\mathrm{2}{v}} =\frac{\mathrm{16}{ln}\mathrm{4}}{\mathrm{32}{v}}×{e}^{−{v}} {W}\left(\mathrm{32}{ve}^{{v}} \right) \\ $$$$\frac{\left\{{W}\left(\mathrm{32}{ve}^{{v}} \right)\right\}^{\mathrm{2}} }{\mathrm{2}{v}^{\mathrm{2}} }+{ve}^{\mathrm{4}{v}} =\frac{{ln}\mathrm{4}}{\mathrm{2}{v}}×{e}^{{v}} {W}\left(\mathrm{32}{ve}^{{v}} \right) \\ $$$$\left\{{W}\left(\mathrm{32}{ve}^{{v}} \right)\right\}^{\mathrm{2}} +\mathrm{2}{v}^{\mathrm{3}} {e}^{\mathrm{4}{v}} ={ve}^{{v}} {W}\left(\mathrm{32}{ve}^{{v}} \right){ln}\mathrm{4} \\ $$$$\left\{{W}\left(\mathrm{32}{ve}^{{v}} \right)\right\}^{\mathrm{2}} −\mathrm{2}\left({ve}^{{v}} {ln}\mathrm{2}\right){W}\left(\mathrm{32}{ve}^{{v}} \right)+{v}^{\mathrm{2}} {e}^{\mathrm{2}{v}} {ln}^{\mathrm{2}} \mathrm{2}={v}^{\mathrm{2}} {e}^{\mathrm{2}{v}} {ln}^{\mathrm{2}} \mathrm{2}−\mathrm{2}{v}^{\mathrm{3}} {e}^{\mathrm{4}{v}} \\ $$$$\left[{W}\left(\mathrm{32}{ve}^{{v}} \right)−{ve}^{{v}} {ln}\mathrm{2}\right]^{\mathrm{2}} ={v}^{\mathrm{2}} {e}^{\mathrm{2}{v}} \left({ln}^{\mathrm{2}} \mathrm{2}−\mathrm{2}{ve}^{\mathrm{2}{v}} \right) \\ $$$$\Rightarrow{W}\left(\mathrm{32}{ve}^{{v}} \right)−{ve}^{{v}} {ln}\mathrm{2}=\pm{ve}^{{v}} \sqrt{{ln}^{\mathrm{2}} \mathrm{2}−\mathrm{2}{ve}^{\mathrm{2}{v}} } \\ $$$${W}\left(\mathrm{32}{ve}^{{v}} \right)={ve}^{{v}} \left({ln}\mathrm{2}\pm\sqrt{{ln}^{\mathrm{2}} \mathrm{2}−\mathrm{2}{ve}^{\mathrm{2}{v}} }\right) \\ $$$$ \\ $$

Commented by Tawakalitu. last updated on 16/Aug/16

Thank you sir, x and y cannot be determine ? or it remain some  steps

$${Thank}\:{you}\:{sir},\:{x}\:{and}\:{y}\:{cannot}\:{be}\:{determine}\:?\:{or}\:{it}\:{remain}\:{some} \\ $$$${steps} \\ $$

Commented by Yozzia last updated on 16/Aug/16

I am not sure if this breakdown  is going anywhere, but perhaps it′ll  be helpful.

$${I}\:{am}\:{not}\:{sure}\:{if}\:{this}\:{breakdown} \\ $$$${is}\:{going}\:{anywhere},\:{but}\:{perhaps}\:{it}'{ll} \\ $$$${be}\:{helpful}. \\ $$

Commented by Tawakalitu. last updated on 16/Aug/16

Thank you sir

$${Thank}\:{you}\:{sir} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com