Question and Answers Forum

All Questions      Topic List

Trigonometry Questions

Previous in All Question      Next in All Question      

Previous in Trigonometry      Next in Trigonometry      

Question Number 722 by malwaan1 last updated on 04/Mar/15

solve the equation cos^(2001) x−sin^(2001) =1

$${solve}\:{the}\:{equation}\:{cos}^{\mathrm{2001}} {x}−{sin}^{\mathrm{2001}} =\mathrm{1} \\ $$$$ \\ $$

Commented by malwaan last updated on 04/Mar/15

what about cos^n x−sin^n x=1

$${what}\:{about}\:{cos}^{{n}} {x}−{sin}^{{n}} {x}=\mathrm{1}\:\: \\ $$

Commented by prakash jain last updated on 04/Mar/15

You will get many solutions including  complex solution and each solution will be periodic  with period 2π when n is odd and with period  π when n is even.  One obvious solution when cos x=1, sin x=0 is:  x=2πk, k∈Z when n is odd  x=πk, k∈Z when n is even

$$\mathrm{You}\:\mathrm{will}\:\mathrm{get}\:\mathrm{many}\:\mathrm{solutions}\:\mathrm{including} \\ $$$$\mathrm{complex}\:\mathrm{solution}\:\mathrm{and}\:\mathrm{each}\:\mathrm{solution}\:\mathrm{will}\:\mathrm{be}\:\mathrm{periodic} \\ $$$$\mathrm{with}\:\mathrm{period}\:\mathrm{2}\pi\:\mathrm{when}\:{n}\:\mathrm{is}\:\mathrm{odd}\:\mathrm{and}\:\mathrm{with}\:\mathrm{period} \\ $$$$\pi\:\mathrm{when}\:{n}\:\mathrm{is}\:\mathrm{even}. \\ $$$$\mathrm{One}\:\mathrm{obvious}\:\mathrm{solution}\:\mathrm{when}\:\mathrm{cos}\:{x}=\mathrm{1},\:\mathrm{sin}\:{x}=\mathrm{0}\:\mathrm{is}: \\ $$$${x}=\mathrm{2}\pi{k},\:{k}\in\mathbb{Z}\:\mathrm{when}\:{n}\:\mathrm{is}\:\mathrm{odd} \\ $$$${x}=\pi{k},\:{k}\in\mathbb{Z}\:\mathrm{when}\:{n}\:\mathrm{is}\:\mathrm{even} \\ $$

Answered by prakash jain last updated on 05/Mar/15

y=e^(ix)   cos x=((y^2 +1)/(2y))  sin x=((y^2 −1)/(2iy))  cos^n x−sin^n x=1  (((y^2 +1)/(2y)))^n −(((y^2 +1)/(2iy)))^n =1  This given an equation which need to  be solved in y. Then you can find x.

$${y}={e}^{{ix}} \\ $$$$\mathrm{cos}\:{x}=\frac{{y}^{\mathrm{2}} +\mathrm{1}}{\mathrm{2}{y}} \\ $$$$\mathrm{sin}\:{x}=\frac{{y}^{\mathrm{2}} −\mathrm{1}}{\mathrm{2}{iy}} \\ $$$$\mathrm{cos}^{{n}} {x}−\mathrm{sin}^{{n}} {x}=\mathrm{1} \\ $$$$\left(\frac{{y}^{\mathrm{2}} +\mathrm{1}}{\mathrm{2}{y}}\right)^{{n}} −\left(\frac{{y}^{\mathrm{2}} +\mathrm{1}}{\mathrm{2}{iy}}\right)^{{n}} =\mathrm{1} \\ $$$$\mathrm{This}\:\mathrm{given}\:\mathrm{an}\:\mathrm{equation}\:\mathrm{which}\:\mathrm{need}\:\mathrm{to} \\ $$$$\mathrm{be}\:\mathrm{solved}\:\mathrm{in}\:{y}.\:\mathrm{Then}\:\mathrm{you}\:\mathrm{can}\:\mathrm{find}\:{x}. \\ $$

Commented by malwaan last updated on 04/Mar/15

Is there simple solution when n=2001

$${Is}\:{there}\:{simple}\:{solution}\:{when}\:{n}=\mathrm{2001}\: \\ $$

Commented by prakash jain last updated on 04/Mar/15

Two simple cases can be considered for  n=2001.  cos x=1, sin x=0⇒x=2πk, k∈Z  cos x=0, sin x=−1⇒x=2πk−(π/2), k∈Z  I will see if there is any other way to  get all solutions for n=2001.

$$\mathrm{Two}\:\mathrm{simple}\:\mathrm{cases}\:\mathrm{can}\:\mathrm{be}\:\mathrm{considered}\:\mathrm{for} \\ $$$${n}=\mathrm{2001}. \\ $$$$\mathrm{cos}\:{x}=\mathrm{1},\:\mathrm{sin}\:{x}=\mathrm{0}\Rightarrow{x}=\mathrm{2}\pi{k},\:{k}\in\mathbb{Z} \\ $$$$\mathrm{cos}\:{x}=\mathrm{0},\:\mathrm{sin}\:{x}=−\mathrm{1}\Rightarrow{x}=\mathrm{2}\pi{k}−\frac{\pi}{\mathrm{2}},\:{k}\in\mathbb{Z} \\ $$$$\mathrm{I}\:\mathrm{will}\:\mathrm{see}\:\mathrm{if}\:\mathrm{there}\:\mathrm{is}\:\mathrm{any}\:\mathrm{other}\:\mathrm{way}\:\mathrm{to} \\ $$$$\mathrm{get}\:\mathrm{all}\:\mathrm{solutions}\:\mathrm{for}\:{n}=\mathrm{2001}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com