All Questions Topic List
Algebra Questions
Previous in All Question Next in All Question
Previous in Algebra Next in Algebra
Question Number 72332 by aliesam last updated on 27/Oct/19
letQ=1+tan(3π8).tan(π10)1−tan(π8).tan(π10)provethatQ−1Q+1=7−35−85−385
Answered by mind is power last updated on 27/Oct/19
Q−1Q+1=tan(π10)(tan(3π8)+tan(π8))2+tan(π10)(tan(3π8)−tan(π8)Missing \left or extra \rightMissing \left or extra \rightcos(a)cos(b)=12(cos(a−b)+cos(a+b))⇒tg(a)+tg(b)=2sin(a+b)cos(a+b)+cos(a−b)⇒tan(3π8)+tan(π8)=2sin(π2)cos(π4)=22tan(3π8)−tan(π8)=2sin(π4)cos(π4)=2Q−1Q+1=22tan(π10)2+2tan(π10)=2tan(π10)1+tan(π10)=2tg2(π10)(1+tg(π10))2tg2(x)(1+tg(x))2=f(x)=2sin2(x)(1+sin(2x))=1+cos(2x)(1+sin(2x)x=π10⇒f(π10)=1+cos(π5)(1+sin(π5))cos(2π5)=−1+54=2cos2(π5)−1=−2sin2(π5)+1toobeecontinued
Commented by aliesam last updated on 27/Oct/19
perfectsir
Terms of Service
Privacy Policy
Contact: info@tinkutara.com