All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 72337 by Rio Michael last updated on 27/Oct/19
Evaluate∫−55(25−x2)dxusing⇒analgebraicmethod⇒Geometricalmehodthanksinadvancedgreatmathematicians
Commented by mathmax by abdo last updated on 27/Oct/19
algebricmethodletA=∫−5525−x2dx⇒A=2∫0525−x2dx(evenfunction)⇒A=x=5sint2∫0π225−25sin2t5costdt=50∫0π2cos2tdt=25∫0π2(1+cos(2t))dt=25π2+252[sin(2t)]0π2=25π2
Answered by MJS last updated on 27/Oct/19
geometricalmethody=25−x2istheuppersemicirclewithcenter(00)andradius5;integral=area⇒∫5−525−x2dx=52π2=252πalgebraicmethod∫25−x2dx=[t=arcsinx5→dx=5costdt]=25∫cos2tdt=252∫1+cos2tdt==252x+254sin2t=252arcsinx5+12x25−x2+Cnowuseborders
Commented by Rio Michael last updated on 27/Oct/19
thankssir
Terms of Service
Privacy Policy
Contact: info@tinkutara.com