Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 72337 by Rio Michael last updated on 27/Oct/19

Evaluate  ∫_(−5) ^5 ((√(25−x^2 )) ) dx using  ⇒ an algebraic method  ⇒ Geometrical mehod   thanks in advanced great mathematicians

Evaluate55(25x2)dxusinganalgebraicmethodGeometricalmehodthanksinadvancedgreatmathematicians

Commented by mathmax by abdo last updated on 27/Oct/19

algebric method  let A=∫_(−5) ^5 (√(25−x^2 ))dx ⇒A=2∫_0 ^5 (√(25−x^2 ))dx  (even function) ⇒A =_(x=5sint)   2∫_0 ^(π/2) (√(25−25sin^2 t))5cost dt  =50 ∫_0 ^(π/2)  cos^2 t dt =25 ∫_0 ^(π/2) (1+cos(2t))dt  =((25π)/2) +((25)/2)[sin(2t)]_0 ^(π/2)  =((25π)/2)

algebricmethodletA=5525x2dxA=20525x2dx(evenfunction)A=x=5sint20π22525sin2t5costdt=500π2cos2tdt=250π2(1+cos(2t))dt=25π2+252[sin(2t)]0π2=25π2

Answered by MJS last updated on 27/Oct/19

geometrical method  y=(√(25−x^2 )) is the upper semicircle with center   ((0),(0) ) and radius 5; integral = area ⇒  ∫_(−5) ^5 (√(25−x^2 ))dx=((5^2 π)/2)=((25)/2)π  algebraic method  ∫(√(25−x^2 ))dx=       [t=arcsin (x/5) → dx=5cos t dt]  =25∫cos^2  t dt=((25)/2)∫1+cos 2t dt=  =((25)/2)x+((25)/4)sin 2t =((25)/2)arcsin (x/5) +(1/2)x(√(25−x^2 )) +C  now use borders

geometricalmethody=25x2istheuppersemicirclewithcenter(00)andradius5;integral=area5525x2dx=52π2=252πalgebraicmethod25x2dx=[t=arcsinx5dx=5costdt]=25cos2tdt=2521+cos2tdt==252x+254sin2t=252arcsinx5+12x25x2+Cnowuseborders

Commented by Rio Michael last updated on 27/Oct/19

thanks sir

thankssir

Terms of Service

Privacy Policy

Contact: info@tinkutara.com