Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 72397 by mathmax by abdo last updated on 28/Oct/19

find A(x)=∫_0 ^(π/2) ln(1−xsin^2 θ)dθ   with ∣x∣<1

findA(x)=0π2ln(1xsin2θ)dθwithx∣<1

Commented bymathmax by abdo last updated on 28/Oct/19

at form of serie we have ln^′ (1−u)=((−1)/(1−u)) =−Σ_(n=0) ^∞  u^n  ⇒  ln(1−u)=−Σ_(n=0) ^∞  (u^(n+1) /(n+1)) +c   (c=0)  =−Σ_(n=1) ^∞  (u^n /n) ⇒ln(1−xsin^2 θ)=−Σ_(n=1) ^∞  ((x^n  sin^(2n) θ)/n) ⇒  A(x)=−Σ_(n=1) ^∞ (∫_0 ^(π/2)   sin^(2n) θ dθ)(x^n /n) =−Σ_(n=1) ^∞  (W_n /n) x^n   with W_n =∫_0 ^(π/2)  sin^(2n) dθ  (wallis integral)

atformofseriewehaveln(1u)=11u=n=0un ln(1u)=n=0un+1n+1+c(c=0) =n=1unnln(1xsin2θ)=n=1xnsin2nθn A(x)=n=1(0π2sin2nθdθ)xnn=n=1Wnnxn withWn=0π2sin2ndθ(wallisintegral)

Commented bymathmax by abdo last updated on 28/Oct/19

let try the parametric method  we have  A(x)=∫_0 ^(π/2) ln(1−x((1−cos(2θ))/2))dθ =∫_0 ^(π/2) ln(2−x+xcosθ)dθ−(π/2)ln(2)  let f(x)=∫_0 ^(π/2) ln(2−x+xcos(2θ))dθ ⇒f^′ (x)=∫_0 ^(π/2) ((−1+cos(2θ))/(2−x +xcos(2θ)))dθ  =_(2θ=t)    (1/2)∫_0 ^π  ((−1+cost)/(2−x +xcost))dt =_(tan((t/2))=u)  (1/2)∫_0 ^∞   ((((1−u^2 )/(1+u^2 ))−1)/(2−x+x((1−u^2 )/(1+u^2 ))))((2du)/(1+u^2 ))  =(1/2)∫_0 ^∞ ((−4u)/((1+u^2 )^2 {2−x+x((1−u^2 )/(1+u^2 ))}))du  =−2∫_0 ^∞    (u/((2−x)(1+u^2 )^2  +x(1−u^4 )))du  =−2∫_0 ^∞   (u/((2−x)(u^4 +2u^2  +1)+x−xu^4 ))  =−2∫_0 ^∞    ((udu)/((2−2x)u^4  +(4−2x)u^2  +2))  =−∫_0 ^∞   ((udu)/((1−x)u^4 +(2−x)u^2  +1)) =∫_0 ^∞   ((udu)/((x−1)u^4 +(x−2)u^2 −1))  let decompose F(u) =(u/((x−1)u^4  +(x−2)u^2 −1))  (x−1)u^4  +(x−2)u^2 −1 =0 ⇒(x−1)z^2  +(x−2)z −1=0  with z =u^2   Δ=(x−2)^2 −4(x−1)(−1) =x^2 −4x +4+4x−4=x^2  ⇒  z_1 =((−x+2+∣x∣)/(2(x−1)))  and z_2 =((−x+2−∣x∣)/(2(x−1)))  case1  x≥0 and x≠1 ⇒z_1 =(1/(x−1)) and z_2 =((−2x+2)/(2(x−1))) =−1 ⇒  F(u) =(u/((x−1(z−z_1 )(z−z_2 ))) =(u/((x−1)(u^2 −(1/(x−1)))(u^2 +1)))  if x>1 ⇒F(u) =(u/((x−1)(u−(1/(√(x−1))))(u+(1/(√(x−1))))(u^2  +1)))  =(a/(u−(1/(√(x−1))))) +(b/(u+(1/(√(x−1))))) +((cu +d)/(u^2  +1))   ...be continued...

lettrytheparametricmethodwehave A(x)=0π2ln(1x1cos(2θ)2)dθ=0π2ln(2x+xcosθ)dθπ2ln(2) letf(x)=0π2ln(2x+xcos(2θ))dθf(x)=0π21+cos(2θ)2x+xcos(2θ)dθ =2θ=t120π1+cost2x+xcostdt=tan(t2)=u1201u21+u212x+x1u21+u22du1+u2 =1204u(1+u2)2{2x+x1u21+u2}du =20u(2x)(1+u2)2+x(1u4)du =20u(2x)(u4+2u2+1)+xxu4 =20udu(22x)u4+(42x)u2+2 =0udu(1x)u4+(2x)u2+1=0udu(x1)u4+(x2)u21 letdecomposeF(u)=u(x1)u4+(x2)u21 (x1)u4+(x2)u21=0(x1)z2+(x2)z1=0 withz=u2 Δ=(x2)24(x1)(1)=x24x+4+4x4=x2 z1=x+2+x2(x1)andz2=x+2x2(x1) case1x0andx1z1=1x1andz2=2x+22(x1)=1 F(u)=u(x1(zz1)(zz2)=u(x1)(u21x1)(u2+1) ifx>1F(u)=u(x1)(u1x1)(u+1x1)(u2+1) =au1x1+bu+1x1+cu+du2+1...becontinued...

Commented bymind is power last updated on 29/Oct/19

this will worck sir since A(0)=0,nice worck

thiswillworcksirsinceA(0)=0,niceworck

Commented bymathmax by abdo last updated on 29/Oct/19

we have A(0)=0

wehaveA(0)=0

Terms of Service

Privacy Policy

Contact: info@tinkutara.com