Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 72408 by ajfour last updated on 28/Oct/19

Commented by ajfour last updated on 28/Oct/19

All three coloured regions A, B, C  have the same area. Center of  circle lies on major axis of ellipse.  Locate the center of circle in terms   of ellipse parameters a and b.

$${All}\:{three}\:{coloured}\:{regions}\:{A},\:{B},\:{C} \\ $$$${have}\:{the}\:{same}\:{area}.\:{Center}\:{of} \\ $$$${circle}\:{lies}\:{on}\:{major}\:{axis}\:{of}\:{ellipse}. \\ $$$${Locate}\:{the}\:{center}\:{of}\:{circle}\:{in}\:{terms}\: \\ $$$${of}\:{ellipse}\:{parameters}\:{a}\:{and}\:{b}. \\ $$

Answered by mr W last updated on 28/Oct/19

Commented by mr W last updated on 29/Oct/19

eqn. of circle:  (x−h)^2 +y^2 =r^2   eqn. of ellipse:  (x^2 /a^2 )+(y^2 /b^2 )=1  (x^2 /a^2 )+((r^2 −(x−h)^2 )/b^2 )=1  b^2 x^2 +a^2 r^2 −a^2 (x^2 −2hx+h^2 )=a^2 b^2   (a^2 −b^2 )x^2 −2a^2 hx+a^2 (b^2 +h^2 −r^2 )=0  x=((a^2 h−a(√(a^2 h^2 −(a^2 −b^2 )(b^2 +h^2 −r^2 ))))/(a^2 −b^2 ))  x=((a^2 h−a(√((a^2 −b^2 )(r^2 −b^2 )+h^2 b^2 )))/(a^2 −b^2 ))=k  area of circle=area of ellipse  πr^2 =πab  ⇒r^2 =ab  with λ=(b/a), η=(h/a)  (k/a)=κ=((η−(√(λ(1−λ)(1−λ^2 )+λ^2 η^2 )))/(1−λ^2 ))  2∫_(h−r) ^k (√(r^2 −(x−h)^2 ))dx+2∫_k ^a b(√(1−(x^2 /a^2 )))dx=((πab)/2)  ∫_(h−(√λ)a) ^k (√(λ−((x/a)−(h/a))^2 ))d((x/a))+λ∫_k ^a (√(1−(x^2 /a^2 )))d((x/a))=((πλ)/4)  ∫_(η−(√λ)) ^κ (√(λ−(ξ−η)^2 ))dξ+λ∫_κ ^1 (√(1−ξ^2 ))dξ=((πλ)/4)  (1/2)[λ sin^(−1) ((ξ−η)/(√λ))+(ξ−η)(√(λ−(ξ−η)^2 ))]_(η−(√λ)) ^κ +(λ/2)[sin^(−1) ξ+ξ(√(1−ξ^2 ))]_κ ^1 =((πλ)/4)  ⇒ sin^(−1) ((κ−η)/(√λ))+((κ−η)/(√λ))(√(1−(((κ−η)/(√λ)))^2 ))+(π/2)=sin^(−1) κ+κ(√(1−κ^2 ))  this is an eqn. for η in terms of λ.    examples:  λ=0.5 ⇒ η=0.6432  λ=0.75 ⇒ η=0.7441  λ=2 ⇒ η=0.9096

$${eqn}.\:{of}\:{circle}: \\ $$$$\left({x}−{h}\right)^{\mathrm{2}} +{y}^{\mathrm{2}} ={r}^{\mathrm{2}} \\ $$$${eqn}.\:{of}\:{ellipse}: \\ $$$$\frac{{x}^{\mathrm{2}} }{{a}^{\mathrm{2}} }+\frac{{y}^{\mathrm{2}} }{{b}^{\mathrm{2}} }=\mathrm{1} \\ $$$$\frac{{x}^{\mathrm{2}} }{{a}^{\mathrm{2}} }+\frac{{r}^{\mathrm{2}} −\left({x}−{h}\right)^{\mathrm{2}} }{{b}^{\mathrm{2}} }=\mathrm{1} \\ $$$${b}^{\mathrm{2}} {x}^{\mathrm{2}} +{a}^{\mathrm{2}} {r}^{\mathrm{2}} −{a}^{\mathrm{2}} \left({x}^{\mathrm{2}} −\mathrm{2}{hx}+{h}^{\mathrm{2}} \right)={a}^{\mathrm{2}} {b}^{\mathrm{2}} \\ $$$$\left({a}^{\mathrm{2}} −{b}^{\mathrm{2}} \right){x}^{\mathrm{2}} −\mathrm{2}{a}^{\mathrm{2}} {hx}+{a}^{\mathrm{2}} \left({b}^{\mathrm{2}} +{h}^{\mathrm{2}} −{r}^{\mathrm{2}} \right)=\mathrm{0} \\ $$$${x}=\frac{{a}^{\mathrm{2}} {h}−{a}\sqrt{{a}^{\mathrm{2}} {h}^{\mathrm{2}} −\left({a}^{\mathrm{2}} −{b}^{\mathrm{2}} \right)\left({b}^{\mathrm{2}} +{h}^{\mathrm{2}} −{r}^{\mathrm{2}} \right)}}{{a}^{\mathrm{2}} −{b}^{\mathrm{2}} } \\ $$$${x}=\frac{{a}^{\mathrm{2}} {h}−{a}\sqrt{\left({a}^{\mathrm{2}} −{b}^{\mathrm{2}} \right)\left({r}^{\mathrm{2}} −{b}^{\mathrm{2}} \right)+{h}^{\mathrm{2}} {b}^{\mathrm{2}} }}{{a}^{\mathrm{2}} −{b}^{\mathrm{2}} }={k} \\ $$$${area}\:{of}\:{circle}={area}\:{of}\:{ellipse} \\ $$$$\pi{r}^{\mathrm{2}} =\pi{ab} \\ $$$$\Rightarrow{r}^{\mathrm{2}} ={ab} \\ $$$${with}\:\lambda=\frac{{b}}{{a}},\:\eta=\frac{{h}}{{a}} \\ $$$$\frac{{k}}{{a}}=\kappa=\frac{\eta−\sqrt{\lambda\left(\mathrm{1}−\lambda\right)\left(\mathrm{1}−\lambda^{\mathrm{2}} \right)+\lambda^{\mathrm{2}} \eta^{\mathrm{2}} }}{\mathrm{1}−\lambda^{\mathrm{2}} } \\ $$$$\mathrm{2}\int_{{h}−{r}} ^{{k}} \sqrt{{r}^{\mathrm{2}} −\left({x}−{h}\right)^{\mathrm{2}} }{dx}+\mathrm{2}\int_{{k}} ^{{a}} {b}\sqrt{\mathrm{1}−\frac{{x}^{\mathrm{2}} }{{a}^{\mathrm{2}} }}{dx}=\frac{\pi{ab}}{\mathrm{2}} \\ $$$$\int_{{h}−\sqrt{\lambda}{a}} ^{{k}} \sqrt{\lambda−\left(\frac{{x}}{{a}}−\frac{{h}}{{a}}\right)^{\mathrm{2}} }{d}\left(\frac{{x}}{{a}}\right)+\lambda\int_{{k}} ^{{a}} \sqrt{\mathrm{1}−\frac{{x}^{\mathrm{2}} }{{a}^{\mathrm{2}} }}{d}\left(\frac{{x}}{{a}}\right)=\frac{\pi\lambda}{\mathrm{4}} \\ $$$$\int_{\eta−\sqrt{\lambda}} ^{\kappa} \sqrt{\lambda−\left(\xi−\eta\right)^{\mathrm{2}} }{d}\xi+\lambda\int_{\kappa} ^{\mathrm{1}} \sqrt{\mathrm{1}−\xi^{\mathrm{2}} }{d}\xi=\frac{\pi\lambda}{\mathrm{4}} \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}\left[\lambda\:\mathrm{sin}^{−\mathrm{1}} \frac{\xi−\eta}{\sqrt{\lambda}}+\left(\xi−\eta\right)\sqrt{\lambda−\left(\xi−\eta\right)^{\mathrm{2}} }\right]_{\eta−\sqrt{\lambda}} ^{\kappa} +\frac{\lambda}{\mathrm{2}}\left[\mathrm{sin}^{−\mathrm{1}} \xi+\xi\sqrt{\mathrm{1}−\xi^{\mathrm{2}} }\right]_{\kappa} ^{\mathrm{1}} =\frac{\pi\lambda}{\mathrm{4}} \\ $$$$\Rightarrow\:\mathrm{sin}^{−\mathrm{1}} \frac{\kappa−\eta}{\sqrt{\lambda}}+\frac{\kappa−\eta}{\sqrt{\lambda}}\sqrt{\mathrm{1}−\left(\frac{\kappa−\eta}{\sqrt{\lambda}}\right)^{\mathrm{2}} }+\frac{\pi}{\mathrm{2}}=\mathrm{sin}^{−\mathrm{1}} \kappa+\kappa\sqrt{\mathrm{1}−\kappa^{\mathrm{2}} } \\ $$$${this}\:{is}\:{an}\:{eqn}.\:{for}\:\eta\:{in}\:{terms}\:{of}\:\lambda. \\ $$$$ \\ $$$${examples}: \\ $$$$\lambda=\mathrm{0}.\mathrm{5}\:\Rightarrow\:\eta=\mathrm{0}.\mathrm{6432} \\ $$$$\lambda=\mathrm{0}.\mathrm{75}\:\Rightarrow\:\eta=\mathrm{0}.\mathrm{7441} \\ $$$$\lambda=\mathrm{2}\:\Rightarrow\:\eta=\mathrm{0}.\mathrm{9096} \\ $$

Commented by ajfour last updated on 28/Oct/19

Thanks sir...  I think, all thats possible, you  did it!

$${Thanks}\:{sir}... \\ $$$${I}\:{think},\:{all}\:{thats}\:{possible},\:{you} \\ $$$${did}\:{it}! \\ $$

Commented by mr W last updated on 28/Oct/19

Commented by mr W last updated on 29/Oct/19

Commented by ajfour last updated on 29/Oct/19

Excellent sir! how about the 3D  analogue when the three   compartment volumes be equal?  i just wonder..

$$\mathcal{E}{xcellent}\:{sir}!\:{how}\:{about}\:{the}\:\mathrm{3}{D} \\ $$$${analogue}\:{when}\:{the}\:{three}\: \\ $$$${compartment}\:{volumes}\:{be}\:{equal}? \\ $$$${i}\:{just}\:{wonder}.. \\ $$

Commented by ajfour last updated on 29/Oct/19

x=h−rcos θ , y=rsin θ ,  r=(√(ab))  (((h−rcos θ)^2 )/a^2 )+((r^2 sin^2 θ)/b^2 )=1  let cos θ=t  ⇒ b^2 (h^2 −2hrt+r^2 t^2 )+a^2 r^2 (1−t^2 )         =a^2 b^2    (a^2 −b^2 )r^2 t^2 +2b^2 hrt−(b^2 h^2 +a^2 r^2 )=0  t=((−b^2 hr+(√(b^4 h^2 r^2 +(a^2 −b^2 )(b^2 h^2 +a^2 r^2 ))))/((a^2 −b^2 )r^2 ))  ellipse  y=(b/a)(√(a^2 −x^2 ))  A=(b/a)∫_(−a) ^( h−rt) (√(a^2 −x^2 ))dx−((r^2 θ)/2)+((r^2 sin θcos θ)/2)      = ((πab)/4)  {(x/2)(√(a^2 −x^2 ))+(a^2 /2)sin^(−1) (x/a)}_(−a) ^(h−rt)      −((r^2 θ)/2)+((r^2 sin θcos θ)/2)=((πab)/4)  ⇒  (((h−rt)/2))(√(a^2 −(h−rt)^2 ))+(a^2 /2)sin^(−1) (((h−rt)/a))+((πa^2 )/4)       −((r^2 cos^(−1) t)/2)+((r^2 t(√(1−t^2 )))/2)=((πab)/4)  t=cos θ is obtained from above eq.  Then to find h,  t=((−b^2 hr+(√(b^4 h^2 r^2 +(a^2 −b^2 )(b^2 h^2 +a^2 r^2 ))))/((a^2 −b^2 )r^2 ))  ..

$${x}={h}−{r}\mathrm{cos}\:\theta\:,\:{y}={r}\mathrm{sin}\:\theta\:,\:\:{r}=\sqrt{{ab}} \\ $$$$\frac{\left({h}−{r}\mathrm{cos}\:\theta\right)^{\mathrm{2}} }{{a}^{\mathrm{2}} }+\frac{{r}^{\mathrm{2}} \mathrm{sin}\:^{\mathrm{2}} \theta}{{b}^{\mathrm{2}} }=\mathrm{1} \\ $$$${let}\:\mathrm{cos}\:\theta={t} \\ $$$$\Rightarrow\:{b}^{\mathrm{2}} \left({h}^{\mathrm{2}} −\mathrm{2}{hrt}+{r}^{\mathrm{2}} {t}^{\mathrm{2}} \right)+{a}^{\mathrm{2}} {r}^{\mathrm{2}} \left(\mathrm{1}−{t}^{\mathrm{2}} \right) \\ $$$$\:\:\:\:\:\:\:={a}^{\mathrm{2}} {b}^{\mathrm{2}} \\ $$$$\:\left({a}^{\mathrm{2}} −{b}^{\mathrm{2}} \right){r}^{\mathrm{2}} {t}^{\mathrm{2}} +\mathrm{2}{b}^{\mathrm{2}} {hrt}−\left({b}^{\mathrm{2}} {h}^{\mathrm{2}} +{a}^{\mathrm{2}} {r}^{\mathrm{2}} \right)=\mathrm{0} \\ $$$${t}=\frac{−{b}^{\mathrm{2}} {hr}+\sqrt{{b}^{\mathrm{4}} {h}^{\mathrm{2}} {r}^{\mathrm{2}} +\left({a}^{\mathrm{2}} −{b}^{\mathrm{2}} \right)\left({b}^{\mathrm{2}} {h}^{\mathrm{2}} +{a}^{\mathrm{2}} {r}^{\mathrm{2}} \right)}}{\left({a}^{\mathrm{2}} −{b}^{\mathrm{2}} \right){r}^{\mathrm{2}} } \\ $$$${ellipse} \\ $$$${y}=\frac{{b}}{{a}}\sqrt{{a}^{\mathrm{2}} −{x}^{\mathrm{2}} } \\ $$$${A}=\frac{{b}}{{a}}\int_{−{a}} ^{\:{h}−{rt}} \sqrt{{a}^{\mathrm{2}} −{x}^{\mathrm{2}} }{dx}−\frac{{r}^{\mathrm{2}} \theta}{\mathrm{2}}+\frac{{r}^{\mathrm{2}} \mathrm{sin}\:\theta\mathrm{cos}\:\theta}{\mathrm{2}} \\ $$$$\:\:\:\:=\:\frac{\pi{ab}}{\mathrm{4}} \\ $$$$\left\{\frac{{x}}{\mathrm{2}}\sqrt{{a}^{\mathrm{2}} −{x}^{\mathrm{2}} }+\frac{{a}^{\mathrm{2}} }{\mathrm{2}}\mathrm{sin}^{−\mathrm{1}} \frac{{x}}{{a}}\right\}_{−{a}} ^{{h}−{rt}} \\ $$$$\:\:\:−\frac{{r}^{\mathrm{2}} \theta}{\mathrm{2}}+\frac{{r}^{\mathrm{2}} \mathrm{sin}\:\theta\mathrm{cos}\:\theta}{\mathrm{2}}=\frac{\pi{ab}}{\mathrm{4}} \\ $$$$\Rightarrow\:\:\left(\frac{{h}−{rt}}{\mathrm{2}}\right)\sqrt{{a}^{\mathrm{2}} −\left({h}−{rt}\right)^{\mathrm{2}} }+\frac{{a}^{\mathrm{2}} }{\mathrm{2}}\mathrm{sin}^{−\mathrm{1}} \left(\frac{{h}−{rt}}{{a}}\right)+\frac{\pi{a}^{\mathrm{2}} }{\mathrm{4}} \\ $$$$\:\:\:\:\:−\frac{{r}^{\mathrm{2}} \mathrm{cos}^{−\mathrm{1}} {t}}{\mathrm{2}}+\frac{{r}^{\mathrm{2}} {t}\sqrt{\mathrm{1}−{t}^{\mathrm{2}} }}{\mathrm{2}}=\frac{\pi{ab}}{\mathrm{4}} \\ $$$${t}=\mathrm{cos}\:\theta\:{is}\:{obtained}\:{from}\:{above}\:{eq}. \\ $$$${Then}\:{to}\:{find}\:{h}, \\ $$$${t}=\frac{−{b}^{\mathrm{2}} {hr}+\sqrt{{b}^{\mathrm{4}} {h}^{\mathrm{2}} {r}^{\mathrm{2}} +\left({a}^{\mathrm{2}} −{b}^{\mathrm{2}} \right)\left({b}^{\mathrm{2}} {h}^{\mathrm{2}} +{a}^{\mathrm{2}} {r}^{\mathrm{2}} \right)}}{\left({a}^{\mathrm{2}} −{b}^{\mathrm{2}} \right){r}^{\mathrm{2}} } \\ $$$$.. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com