Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 72466 by Learner-123 last updated on 29/Oct/19

Prove that ∫_0 ^( 2) ∫_(−(√(1−(y−1)^2 ))) ^(  0 )  xy^2 dxdy = −(4/5)  after changing the integral to polar form.

Provethat021(y1)20xy2dxdy=45afterchangingtheintegraltopolarform.

Commented by Abdo msup. last updated on 30/Oct/19

I=∫_0 ^2 ( ∫_(−(√(1−(y−1)^2 ))) ^0   xdx)y^2 dy but  ∫_(−(√(1−(y−1)^2 ))) ^0 xdx =[(x^2 /2)]_(−(√(1−(y−1)^2 ))) ^0 =−((1−(y−1)^2 )/2)  =−((1−y^2 +2y−1)/2) =((y^2 −2y)/2) ⇒  I =(1/2)∫_0 ^2 (y^2 −2y)y^2 dy =(1/2)∫_0 ^2 (y^4 −2y^3 )dy  =(1/2)[(y^5 /5)−(1/2)y^4 ]_0 ^2 =(1/2){((32)/5)−8}=(1/2)×((−8)/5) =−(4/5)  without use of polar coordinates.

I=02(1(y1)20xdx)y2dybut1(y1)20xdx=[x22]1(y1)20=1(y1)22=1y2+2y12=y22y2I=1202(y22y)y2dy=1202(y42y3)dy=12[y5512y4]02=12{3258}=12×85=45withoutuseofpolarcoordinates.

Commented by Learner-123 last updated on 30/Oct/19

thanks sir.

thankssir.

Answered by mind is power last updated on 29/Oct/19

x=rcos(θ)  y=rsin(θ)  dxdy=rdrdθ         0≥x≥−(√(1−(y−1)))^2   0≤x^2 ≤1−(y−1)^2 =2y−y^2 ⇒0≤x^2 +y^2 ≤2y  0≤r^2 ≤2rsin(θ)⇒0≤r≤2sin(θ)  0≤y≤2  ⇒0≤rsin(θ)≤2⇒sin(θ)≥0⇒θ∈[0,π]  but x≤0⇒cos(θ)≤0⇒θ∈[(π/2),2]  our integral ⇔∫_((π/2) ) ^π ∫_0 ^(2sin(θ)) .rcos(θ).r^2 sin^2 (θ).rdrdθ  =∫_(π/2) ^π ∫_0 ^(2sin(θ)) .r^4 cos(θ)sin^2 (θ)drdθ

x=rcos(θ)y=rsin(θ)dxdy=rdrdθ0x1(y1)20x21(y1)2=2yy20x2+y22y0r22rsin(θ)0r2sin(θ)0y20rsin(θ)2sin(θ)0θ[0,π]butx0cos(θ)0θ[π2,2]ourintegralπ2π02sin(θ).rcos(θ).r2sin2(θ).rdrdθ=π2π02sin(θ).r4cos(θ)sin2(θ)drdθ

Commented by Learner-123 last updated on 29/Oct/19

One more Ques. ::   ∫_(−a) ^( a) ∫_(−(√(a^2 −x^2 ))) ^( (√(a^2 −x^2 )))  dydx.

OnemoreQues.::aaa2x2a2x2dydx.

Commented by Learner-123 last updated on 29/Oct/19

thank you sir!

thankyousir!

Commented by mind is power last updated on 29/Oct/19

y′re Welcom

yreWelcom

Commented by mind is power last updated on 29/Oct/19

x=rcos(b)  y=rsin(b)  we have −a<x<a  −(√(a^2 −x^2 ))<y<(√(a^2 −x^2 ))⇒0<x^2 +y^2 ≤a^2   ⇒0<R<a  b∈[0,2π]  ∫_0 ^(2π) ∫_0 ^a rdrdb  =2π.((a^2 /2))=πa^2

x=rcos(b)y=rsin(b)wehavea<x<aa2x2<y<a2x20<x2+y2a20<R<ab[0,2π]02π0ardrdb=2π.(a22)=πa2

Commented by Learner-123 last updated on 29/Oct/19

thanks again ,sir!

thanksagain,sir!

Commented by mind is power last updated on 29/Oct/19

most Welcom

mostWelcom

Terms of Service

Privacy Policy

Contact: info@tinkutara.com