Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 72483 by TawaTawa last updated on 29/Oct/19

Σ_(k = 0) ^n  cos(a + kb)

nk=0cos(a+kb)

Answered by Tanmay chaudhury last updated on 29/Oct/19

T_k =cos(a+kb)  S=T_0 +T_1 +T_2 +...+T_n   T_0 ×2sin(b/2)=2cosa×sin(b/2)=sin(a+(b/2))−sin(a−(b/2))  T_1 ×2sin(b/2)=2cos(a+b)×sin(b/2)=sin(a+((3b)/2))−sin(a+(b/2))  T_2 ×2sin(b/2)=2cos(a+2b)×sin(b/2)=sin(a+((5b)/2))−sin(a+((3b)/2))  ...  ....  T_n ×2sin(b/2)=2cos(a+nb)×sin(b/2)=sin(a+(((2n+1)b)/2))−sin(a+(((2n−1)b)/2))  add LHS and RHS  S×2sin(b/2)=sin(a+(((2n+1)b)/2))−sin(a−(b/2))  so S=((sin(a+(((2n+1)b)/2))−sin(a−(b/2)))/(2sin(b/2)))

Tk=cos(a+kb)S=T0+T1+T2+...+TnT0×2sinb2=2cosa×sinb2=sin(a+b2)sin(ab2)T1×2sinb2=2cos(a+b)×sinb2=sin(a+3b2)sin(a+b2)T2×2sinb2=2cos(a+2b)×sinb2=sin(a+5b2)sin(a+3b2).......Tn×2sinb2=2cos(a+nb)×sinb2=sin(a+(2n+1)b2)sin(a+(2n1)b2)addLHSandRHSS×2sinb2=sin(a+(2n+1)b2)sin(ab2)soS=sin(a+(2n+1)b2)sin(ab2)2sinb2

Commented by TawaTawa last updated on 29/Oct/19

God bless you sir

Godblessyousir

Answered by mind is power last updated on 29/Oct/19

cos(a+kb)=Re(e^(i(a+kb)) )  Σ_(k=0) ^n cos(a+kb)=Re(Σ_(k=0) ^n e^(i(a+kb)) )=Re {e^(ia) .((1−e^(i(n+1)b) )/(1−e^(ib) ))}  =Re{((e^(i(((nb+2a))/2)) .(e^(−i((n+1)/2)) −e^(i((n+1)/2)) ))/(e^(−((ib)/2)) −e^((ib)/2) ))}=Re{((e^(i(((nb+2a)/2))) .sin(((n+1)/2)b))/(sin((b/2))))}  =((sin(((n+1)/2)b))/(sin((b/2)))).cos(((nb+2a)/2))

cos(a+kb)=Re(ei(a+kb))nk=0cos(a+kb)=Re(nk=0ei(a+kb))=Re{eia.1ei(n+1)b1eib}=Re{ei(nb+2a)2.(ein+12ein+12)eib2eib2}=Re{ei(nb+2a2).sin(n+12b)sin(b2)}=sin(n+12b)sin(b2).cos(nb+2a2)

Commented by TawaTawa last updated on 29/Oct/19

God bless you sir

Godblessyousir

Terms of Service

Privacy Policy

Contact: info@tinkutara.com