Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 72488 by aliesam last updated on 29/Oct/19

 { ((4xy=1)),((4(√(1−x^2 )) ( y−(√(1−y^2 )) )=1)) :}    Resolver elsistema en R

{4xy=141x2(y1y2)=1ResolverelsistemaenR

Answered by behi83417@gmail.com last updated on 30/Oct/19

x=cost,y=cosr  ⇒ { ((4sint(cosr−sinr)=1)),((4cost.cosr=1)) :}  ⇒(1/((cosr−sinr)^2 ))+(1/(cos^2 r))=4⇒  ⇒cos^2 r+(cosr−sinr)^2 =4cos^2 r.(cosr−sinr)^2   ((1+cos2r)/2)+1−sin2r=2(1+cos2r)(1−sin2r)  ⇒1+cos2r+2−2sin2r=  4(1−sin2r+cos2r−sin2rcos2r)  ⇒3+cos2r−2sin2r=          4−4sin2r+4cos2r−4sin2rcos2r  ⇒3cos2r−2sin2r−4sin2rcos2r+1=0  [let:c=cos2r,s=sin2r]⇒  3c−2s−4sc+1=0  9c^2 +4s^2 −12sc=16s^2 c^2 −8sc+1  9c^2 +4s^2 −16s^2 c^2 =4sc+1  5c^2 −16c^2 (1−c^2 )+3=4sc  ⇒16c^4 −11c^2 +3=4sc  ⇒256c^8 +121c^4 +9−352c^6 +96c^4 −66c^2 =                         =16c^2 −16c^4   ⇒256c^8 −352c^6 +233c^4 −82c^2 +9=0  ⇒c=±0.42,±0.76  ⇒cos2r=±0.42,±0.76  ⇒ { ((cos2r=0.42⇒y=cosr=0.843)),((⇒x=(1/(4y))=(1/(4×0.843))=0.211)) :}  ⇒ { ((cos2r=−0.42⇒y=cosr=0.54)),((x=(1/(4y))=(1/(4×0.211))=0.053)) :}  ⇒ { ((cos2r=0.76⇒y=cosr=0.938)),((x=(1/(4y))=(1/(4×0.938))=0.235)) :}  ⇒ { ((cos2r=−0.76⇒y=cosr=0.346)),((x=(1/(4y))=(1/(4×0.346))=0.087)) :}

x=cost,y=cosr{4sint(cosrsinr)=14cost.cosr=11(cosrsinr)2+1cos2r=4cos2r+(cosrsinr)2=4cos2r.(cosrsinr)21+cos2r2+1sin2r=2(1+cos2r)(1sin2r)1+cos2r+22sin2r=4(1sin2r+cos2rsin2rcos2r)3+cos2r2sin2r=44sin2r+4cos2r4sin2rcos2r3cos2r2sin2r4sin2rcos2r+1=0[let:c=cos2r,s=sin2r]3c2s4sc+1=09c2+4s212sc=16s2c28sc+19c2+4s216s2c2=4sc+15c216c2(1c2)+3=4sc16c411c2+3=4sc256c8+121c4+9352c6+96c466c2==16c216c4256c8352c6+233c482c2+9=0c=±0.42,±0.76cos2r=±0.42,±0.76{cos2r=0.42y=cosr=0.843x=14y=14×0.843=0.211{cos2r=0.42y=cosr=0.54x=14y=14×0.211=0.053{cos2r=0.76y=cosr=0.938x=14y=14×0.938=0.235{cos2r=0.76y=cosr=0.346x=14y=14×0.346=0.087

Commented by aliesam last updated on 29/Oct/19

god bless you

godblessyou

Answered by MJS last updated on 29/Oct/19

(1)  ⇒ x=(1/(4y))  ⇒  (2)  (((√(16y^2 −1))(y−(√(1−y^2 ))))/(∣y∣))=1  (√(16y^2 −1))(y−(√(1−y^2 )))−∣y∣=0  ⇒ −1≤y≤−(1/4) ∨ (1/4)≤y≤1  we can only approximate (it leads to a  biquartic in y ⇒ quartic in (√y) which has  no “nice” solution)  the only solution I get is  x≈.302667; y≈.825989

(1)x=14y(2)16y21(y1y2)y=116y21(y1y2)y∣=01y1414y1wecanonlyapproximate(itleadstoabiquarticinyquarticinywhichhasnonicesolution)theonlysolutionIgetisx.302667;y.825989

Terms of Service

Privacy Policy

Contact: info@tinkutara.com