Question and Answers Forum

All Questions      Topic List

Number Theory Questions

Previous in All Question      Next in All Question      

Previous in Number Theory      Next in Number Theory      

Question Number 7249 by Rasheed Soomro last updated on 19/Aug/16

w,x,y,z are digits in respective base system and  a,b are bases.  Find out an example/examples which satisfy  the following                 wxyz_a +wxyz_b =wxyz_(a+b)

w,x,y,zaredigitsinrespectivebasesystemanda,barebases.Findoutanexample/exampleswhichsatisfythefollowingwxyza+wxyzb=wxyza+b

Commented by Yozzia last updated on 19/Aug/16

2^1 +2^1 =(2+2)^1 =4^1   {1×2+0×2^0 }+{1×2+0×2^0 }=1×4+0×4^0   or (10)_2 +(10)_2 =(10)_4

21+21=(2+2)1=41{1×2+0×20}+{1×2+0×20}=1×4+0×40or(10)2+(10)2=(10)4

Commented by Rasheed Soomro last updated on 19/Aug/16

Four digit number is required.

Fourdigitnumberisrequired.

Commented by Yozzia last updated on 19/Aug/16

wxyz_a +wxyz_b =wxyz_(a+b)     (∗)  Suppose wxyz is an integer identical on both sides of (∗)  e.g  1234_a +1234_b =1234_(a+b)    for some given a,b∈N.  [wa^3 +xa^2 +ya+z]+[wb^3 +xb^2 +yb+z]=w(a+b)^3 +x(a+b)^2 +y(a+b)+z  w{a^3 +b^3 −(a+b)^3 }+x{a^2 +b^2 −(a+b)^2 }+y(a+b−a−b)+2z−z=0  w{−3a^2 b−3ab^2 }+x{−2ab}+z=0  w{3a^2 b+3ab^2 }+2xab−z=0    The form of the above equation is   independent of the value of y∈N.  z=ab(2x+3w(a+b))  w,x∈Z^≥ , a,b∈N−{1} and ab∣z. If x>0 or w>0  then 2x+3w(a+b)>1⇒z>ab>a and z>b.  However, 0≤z≤min(a−1,b−1)<min(a,b)  for z in wxyz_a  and wxyz_b , a contradiction.  Hence, we must have x=w=0 ⇒ z=0.  ∴ we get 00y0_a +00y0_b =00y0_(a+b)   or y0_a +y0_b =y0_(a+b)   or ya+yb=y(a+b) for any y∈N ,0≤y<a,y<b  when a and b are known bases.  No four digit integer wxyz satisfies  wxyz_a +wxyz_b =wxyz_(a+b) .

wxyza+wxyzb=wxyza+b()Supposewxyzisanintegeridenticalonbothsidesof()e.g1234a+1234b=1234a+bforsomegivena,bN.[wa3+xa2+ya+z]+[wb3+xb2+yb+z]=w(a+b)3+x(a+b)2+y(a+b)+zw{a3+b3(a+b)3}+x{a2+b2(a+b)2}+y(a+bab)+2zz=0w{3a2b3ab2}+x{2ab}+z=0w{3a2b+3ab2}+2xabz=0TheformoftheaboveequationisindependentofthevalueofyN.z=ab(2x+3w(a+b))w,xZ,a,bN{1}andabz.Ifx>0orw>0then2x+3w(a+b)>1z>ab>aandz>b.However,0zmin(a1,b1)<min(a,b)forzinwxyzaandwxyzb,acontradiction.Hence,wemusthavex=w=0z=0.weget00y0a+00y0b=00y0a+bory0a+y0b=y0a+borya+yb=y(a+b)foranyyN,0y<a,y<bwhenaandbareknownbases.Nofourdigitintegerwxyzsatisfieswxyza+wxyzb=wxyza+b.

Commented by Rasheed Soomro last updated on 20/Aug/16

V. NicE!  What is meant by :     w,x∈Z^≥    ?

V.NicE!Whatismeantby:w,xZ?

Commented by Yozzia last updated on 20/Aug/16

Z^≥ ={0,1,2,3,4,...}  w,x∈Z^≥ ≡x,w are non−negative integers.

Z={0,1,2,3,4,...}w,xZx,warenonnegativeintegers.

Commented by Rasheed Soomro last updated on 20/Aug/16

ThαnkS!

ThαnkS!

Commented by Yozzia last updated on 20/Aug/16

Let q be a number of digit length n≥3,  and c,b∈[N−{1}]. Write k_m  for the  number k corresponding to base m≥2.  Suppose that q_c +q_b =q_(c+b) .   Then, no q exists satisfying this equation  for n≥3.  −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−  PROOF:  Looking at the equation q_c +q_b =q_(c+b) ,  q has a digit representation of the form  q=a_0 ^� a_1 ^� a_2 ^� a_3 ^� ...a_(n−1) ^�  where 0≤a_i ≤min(c−1,b−1)  for i=1 , 2 , ... , n−1, and 1≤a_0 ≤min(c−1,b−1).  Therefore q_c =Σ_(i=0) ^(n−1) a_i c^(n−1−i)  , q_b =Σ_(i=1) ^(n−1) a_i b^(n−1−i)   and q_(c+b) =Σ_(i=0) ^(n−1) a_i (b+c)^(n−1−i) .   Σ_(i=0) ^(n−1) a_i c^(n−1−i) +Σ_(i=0) ^(n−1) a_i b^(n−1−i) =Σ_(i=0) ^(n−1) a_i (b+c)^(n−1−i)   Σ_(i=0) ^(n−1) {a_i c^(n−1−i) +a_i b^(n−1−i) −a_i (b+c)^(n−1−i) }=0  Σ_(i=0) ^(n−1) [a_i {c^(n−1−i) +b^(n−1−i) −(b+c)^(n−1−i) }]=0  Σ_(i=0) ^(n−3) [a_i {c^(n−1−i) +b^(n−1−i) −(b+c)^(n−1−i) }]+a_(n−2) {c^(n−1−n+2) +b^(n−1−n+2) −(b+c)^(n−1−n+2) }+a_(n−1) {c^(n−1−n+1) +b^(n−1−n+1) −(b+c)^(n−1−n+1) }=0  Σ_(i=0) ^(n−3) [a_i {c^(n−1−i) +b^(n−1−i) −(b+c)^(n−1−i) }]+a_(n−2) {c+b−(b+c)}+a_(n−1) {1+1−1}=0  Σ_(i=0) ^(n−3) [a_i {c^(n−1−i) +b^(n−1−i) −(b+c)^(n−1−i) }]+a_(n−1) =0  a_(n−1) =Σ_(i=0) ^(n−3) [a_i {(b+c)^(n−1−i) −c^(n−1−i) −b^(n−1−i) }]    According to the Binomial Theorem,  (b+c)^(n−1−i) =Σ_(k=0) ^(n−1−i)  (((n−1−i)),(k) ) b^(n−1−i−k) c^k   or (b+c)^(n−1−i) =b^(n−1−i) +c^(n−1−i) +Σ_(k=1) ^(n−2−i)  (((n−1−i)),(k) ) b^(n−1−i−k) c^k .  ∴ (b+c)^(n−1−i) −b^(n−1−i) −c^(n−1−i) =Σ_(k=1) ^(n−2−i)  (((n−1−i)),(k) ) b^(n−1−i−k) c^k .  a_(n−1) =Σ_(i=0) ^(n−3) [a_i {Σ_(k=1) ^(n−2−i)  (((n−1−i)),(k) ) b^(n−1−i−k) c^k }]   a_(n−1) =a_0 {Σ_(k=1) ^(n−2)  (((n−1)),(k) ) b^(n−1−k) c^k }+a_1 {Σ_(k=1) ^(n−3)  (((n−2)),(k) ) b^(n−2−k) c^k }                +a_2 {Σ_(k=1) ^(n−4)  (((n−3)),(k) ) b^(n−3−k) c^k }+...+a_(n−4) {Σ_(k=1) ^2  ((3),(k) ) b^(3−k) c^k }+a_(n−3) {Σ_(k=1) ^1  ((2),(k) ) b^(2−k) c^k }  Observe that the form of the above equation  is indepedent of a_(n−2) ; so a_(n−2)  is a free  variable such that 0≤a_(n−2) ≤min(c−1,b−1).  −−−−−−−−−−−−−−−−−−−−−−−−−−−−−  Proposition: For any n≥3, bc divides Σ_(k=1) ^(n−2)  (((n−1)),(k) ) b^(n−1−k) c^k .  Proof (induction): Base case n=3: Σ_(k=1) ^(3−2)  (((3−1)),(k) ) b^(3−1−k) c^k = ((2),(1) ) bc  ⇒bc divides Σ_(k=1) ^(n−2)  (((n−1)),(k) ) b^(n−1−k) c^k  for n=3.    Inductive step: Suppose bc divides Σ_(k=1) ^(j−2)  (((j−1)),(k) ) b^(j−1−k) c^k  for n=j.  i.e Σ_(k=1) ^(j−2)  (((j−1)),(k) ) b^(j−1−k) c^k =rbc for some r∈N.  For n=j+1, we have that Σ_(k=1) ^(j−1)  ((j),(k) ) b^(j−k) c^k =Σ_(k=1) ^(j−1) { (((j−1)),(k) ) + (((j−1)),((k−1)) )}b^(j−k) c^k

Letqbeanumberofdigitlengthn3,andc,b[N{1}].Writekmforthenumberkcorrespondingtobasem2.Supposethatqc+qb=qc+b.Then,noqexistssatisfyingthisequationforn3.PROOF:Lookingattheequationqc+qb=qc+b,qhasadigitrepresentationoftheformq=a¯0a¯1a¯2a¯3...a¯n1where0aimin(c1,b1)fori=1,2,...,n1,and1a0min(c1,b1).Thereforeqc=n1i=0aicn1i,qb=n1i=1aibn1iandqc+b=n1i=0ai(b+c)n1i.n1i=0aicn1i+n1i=0aibn1i=n1i=0ai(b+c)n1in1i=0{aicn1i+aibn1iai(b+c)n1i}=0n1i=0[ai{cn1i+bn1i(b+c)n1i}]=0n3i=0[ai{cn1i+bn1i(b+c)n1i}]+an2{cn1n+2+bn1n+2(b+c)n1n+2}+an1{cn1n+1+bn1n+1(b+c)n1n+1}=0n3i=0[ai{cn1i+bn1i(b+c)n1i}]+an2{c+b(b+c)}+an1{1+11}=0n3i=0[ai{cn1i+bn1i(b+c)n1i}]+an1=0an1=n3i=0[ai{(b+c)n1icn1ibn1i}]AccordingtotheBinomialTheorem,(b+c)n1i=n1ik=0(n1ik)bn1ikckor(b+c)n1i=bn1i+cn1i+n2ik=1(n1ik)bn1ikck.(b+c)n1ibn1icn1i=n2ik=1(n1ik)bn1ikck.an1=n3i=0[ai{n2ik=1(n1ik)bn1ikck}]an1=a0{n2k=1(n1k)bn1kck}+a1{n3k=1(n2k)bn2kck}+a2{n4k=1(n3k)bn3kck}+...+an4{2k=1(3k)b3kck}+an3{1k=1(2k)b2kck}Observethattheformoftheaboveequationisindepedentofan2;soan2isafreevariablesuchthat0an2min(c1,b1).Proposition:Foranyn3,bcdividesn2k=1(n1k)bn1kck.Proof(induction):Basecasen=3:32k=1(31k)b31kck=(21)bcbcdividesn2k=1(n1k)bn1kckforn=3.Inductivestep:Supposebcdividesj2k=1(j1k)bj1kckforn=j.i.ej2k=1(j1k)bj1kck=rbcforsomerN.Forn=j+1,wehavethatj1k=1(jk)bjkck=j1k=1{(j1k)+(j1k1)}bjkck

Commented by Yozzia last updated on 20/Aug/16

Let t(n)=Σ_(k=1) ^(n−2)  (((n−1)),(k) ) b^(n−1−k) c^k , n≥3.  Since bc divides t(n) for n≥3,then  bc divides a_(n−1)  since a_(n−1) =a_0 t(n)+a_1 t(n−1)+a_2 t(n−2)+a_3 t(n−3)+...+a_(n−3) t(3).  Now, b>1, c>1 and all a_i   (i=0,1,2,...)  are non−negative integers, where min(a_0 )=1.  ∴a_(n−1) =bcla_0 +... (l∈N). But, if min(a_0 )=1⇒a_(n−1) >b and a_(n−1) >c,  while 0≤a_(n−1) ≤min(c−1,b−1)<min(c,b).  This contradiction indicates that q  cannot be a number having digit length  n≥3, and q_c +q_b =q_(b+c) .                        ////

Lett(n)=n2k=1(n1k)bn1kck,n3.Sincebcdividest(n)forn3,thenbcdividesan1sincean1=a0t(n)+a1t(n1)+a2t(n2)+a3t(n3)+...+an3t(3).Now,b>1,c>1andallai(i=0,1,2,...)arenonnegativeintegers,wheremin(a0)=1.an1=bcla0+...(lN).But,ifmin(a0)=1an1>bandan1>c,while0an1min(c1,b1)<min(c,b).Thiscontradictionindicatesthatqcannotbeanumberhavingdigitlengthn3,andqc+qb=qb+c.////

Commented by Yozzia last updated on 20/Aug/16

Σ_(k=1) ^(j−1)  ((j),(k) ) b^(j−k) c^k =b{Σ_(k=1) ^(j−2)  (((j−1)),(k) ) b^(j−1−k) c^k + (((j−1)),((j−1)) ) b^0 c}+Σ_(k=1) ^(j−1)  (((j−1)),((k−1)) ) b^(j−k) c^k   Σ_(k=1) ^(j−1)  ((j),(k) ) b^(j−k) c^k =b×rbc+bc+Σ_(k=1) ^(j−1)  (((j−1)),((k−1)) ) b^(j−k) c^k   Σ_(k=1) ^(j−1)  ((j),(k) ) b^(j−k) c^k =bc(br+1)+{Σ_(k=1) ^(j−2)  (((j−1)),((k−1)) ) b^(j−k) c^k + (((j−1)),((j−2)) ) b^(j−j+1) c^(j−1) }  Σ_(k=1) ^(j−1)  ((j),(k) ) b^(j−k) c^k =bc(br+1)+(j−1)bc^(j−1) +{Σ_(k=1) ^(j−2)  (((j−1)),((k−1)) ) b^(j−k) c^k }  Σ_(k=1) ^(j−1)  ((j),(k) ) b^(j−k) c^k =bc(br+1)+(j−1)bc^(j−1) +b^(j−1) c+{c (((j−1)),(1) ) b^(j−2) c+c (((j−1)),(2) ) b^(j−3) c^2 +...+c (((j−1)),((j−3)) ) b^2 c^(j−3) + (((j−1)),((j−2)) ) bc^(j−2) − (((j−1)),((j−2)) ) bc^(j−2) }  Σ_(k=1) ^(j−1)  ((j),(k) ) b^(j−k) c^k =bc(br+1)+(j−1)bc^(j−1) +b^(j−1) c+c{ (((j−1)),(1) ) b^(j−2) c+ (((j−1)),(2) ) b^(j−3) c^2 +...+ (((j−1)),((j−3)) ) b^2 c^(j−3) + (((j−1)),((j−2)) ) bc^(j−2) }− (((j−1)),((j−2)) ) bc^(j−1)   Σ_(k=1) ^(j−1)  ((j),(k) ) b^(j−k) c^k =bc(br+1)+(j−1)bc^(j−1) +b^(j−1) c+cΣ_(k=1) ^(j−2)  (((j−1)),(k) ) b^(j−1−k) c^k −(j−1) bc^(j−1)   Σ_(k=1) ^(j−1)  ((j),(k) ) b^(j−k) c^k =bc(br+1+cr)+b^(j−1) c  Since j≥3⇒ j−1>1 ⇒bc divides b^(j−1) c.  Therefore, bc divides Σ_(k=1) ^(j−1)  ((j),(k) ) b^(j−k) c^k , if bc divides Σ_(k=1) ^(j−2)  (((j−1)),(k) ) b^(j−1−k) c^k .  Hence, by P.M.I, the proposition is true.  −−−−−−−−−−−−−−−−−−−−−−−−−−−

j1k=1(jk)bjkck=b{j2k=1(j1k)bj1kck+(j1j1)b0c}+j1k=1(j1k1)bjkckj1k=1(jk)bjkck=b×rbc+bc+j1k=1(j1k1)bjkckj1k=1(jk)bjkck=bc(br+1)+{j2k=1(j1k1)bjkck+(j1j2)bjj+1cj1}j1k=1(jk)bjkck=bc(br+1)+(j1)bcj1+{j2k=1(j1k1)bjkck}j1k=1(jk)bjkck=bc(br+1)+(j1)bcj1+bj1c+{c(j11)bj2c+c(j12)bj3c2+...+c(j1j3)b2cj3+(j1j2)bcj2(j1j2)bcj2}j1k=1(jk)bjkck=bc(br+1)+(j1)bcj1+bj1c+c{(j11)bj2c+(j12)bj3c2+...+(j1j3)b2cj3+(j1j2)bcj2}(j1j2)bcj1j1k=1(jk)bjkck=bc(br+1)+(j1)bcj1+bj1c+cj2k=1(j1k)bj1kck(j1)bcj1j1k=1(jk)bjkck=bc(br+1+cr)+bj1cSincej3j1>1bcdividesbj1c.Therefore,bcdividesj1k=1(jk)bjkck,ifbcdividesj2k=1(j1k)bj1kck.Hence,byP.M.I,thepropositionistrue.

Commented by Rasheed Soomro last updated on 20/Aug/16

Wow! What a depth you have in mathematics!  Good wishes for you and your future!

Wow!Whatadepthyouhaveinmathematics!Goodwishesforyouandyourfuture!

Commented by Yozzia last updated on 20/Aug/16

Thanks for your kind words!

Thanksforyourkindwords!

Terms of Service

Privacy Policy

Contact: info@tinkutara.com