All Questions Topic List
Trigonometry Questions
Previous in All Question Next in All Question
Previous in Trigonometry Next in Trigonometry
Question Number 72497 by Shamim last updated on 29/Oct/19
if,cotθ+cosecθ=13thenfindthevalue ofθwhere0<θ⩽2π.
Answered by behi83417@gmail.com last updated on 29/Oct/19
cosθsinθ+1sinθ=13⇒1+cosθsinθ=13⇒ 2cos2θ22sinθ2cosθ2=13⇒{1.cosθ2=02.cotθ2=13 1)cosθ2=0⇒θ2=±π2+kπ⇒θ=kπ±π [for:k=0,1⇒θ=0∙[notok],π,2π] 2)cotθ2=13=cotπ3⇒θ2=π3+lπ ⇒[θ=2π3+2lπ,for:l=0,1⇒θ=2π3,5π3]
Answered by Tanmay chaudhury last updated on 29/Oct/19
cosec2θ−cot2θ=1 (cosecθ+cotθ)(cosecθ−cotθ)=1 13×(cosecθ−cotθ)=1 cozecθ+cotθ=13 cosecθ−cotθ=3 2cosecθ=13+3=43 cosecθ=23→sinθ=32=sinπ3orsin(π−π3)=sin2π3 2cotθ=13−3→2cotθ=−23 cotθ=−13→tanθ=−3=tan(π−π3)=tan2π3 sothesolutionis2π3
Answered by MJS last updated on 29/Oct/19
cotθ+cosecθ=13 1tanθ+1sinθ=13 1+cosθsinθ=13 1tanθ2=13 tanθ2=3 θ=2π3+2nπ 0<θ⩽2π⇒θ=2π3
Terms of Service
Privacy Policy
Contact: info@tinkutara.com