Question and Answers Forum

All Questions      Topic List

Trigonometry Questions

Previous in All Question      Next in All Question      

Previous in Trigonometry      Next in Trigonometry      

Question Number 72497 by Shamim last updated on 29/Oct/19

if, cot θ+cosec θ=(1/(√3)) then find the value  of θ where 0<θ≤2π.

if,cotθ+cosecθ=13thenfindthevalue ofθwhere0<θ2π.

Answered by behi83417@gmail.com last updated on 29/Oct/19

((cosθ)/(sinθ))+(1/(sinθ))=(1/(√3))⇒((1+cosθ)/(sinθ))=(1/(√3))⇒  ((2cos^2 (θ/2))/(2sin(θ/2)cos(θ/2)))=(1/(√3))⇒ { ((1.cos(θ/2)=0)),((2.cot(θ/2)=(1/(√3)))) :}  1) cos(θ/2)=0⇒(θ/2)=±(π/2)+kπ⇒θ=kπ±π  [for:k=0,1⇒θ=0^• [not ok],π,2π]  2)cot(θ/2)=(1/(√3))=cot(π/3)⇒(θ/2)=(π/3)+lπ  ⇒[θ=((2π)/3)+2lπ,for:l=0,1⇒θ=((2π)/3),((5π)/3)]

cosθsinθ+1sinθ=131+cosθsinθ=13 2cos2θ22sinθ2cosθ2=13{1.cosθ2=02.cotθ2=13 1)cosθ2=0θ2=±π2+kπθ=kπ±π [for:k=0,1θ=0[notok],π,2π] 2)cotθ2=13=cotπ3θ2=π3+lπ [θ=2π3+2lπ,for:l=0,1θ=2π3,5π3]

Answered by Tanmay chaudhury last updated on 29/Oct/19

cosec^2 θ−cot^2 θ=1  (cosecθ+cotθ)(cosecθ−cotθ)=1  (1/(√3))×(cosecθ−cotθ)=1  cozecθ+cotθ=(1/(√3))  cosecθ−cotθ=(√3)   2cosecθ=(1/(√3))+(√3) =(4/(√3))  cosecθ=(2/(√3))→sinθ=((√3)/2)=sin(π/3)  or  sin(π−(π/3))=sin((2π)/3)  2cotθ=(1/(√3))−(√3) →2cotθ=((−2)/(√3))  cotθ=((−1)/(√3))→tanθ=−(√3) =tan(π−(π/3))=tan((2π)/3)  so the solution is ((2π)/3)

cosec2θcot2θ=1 (cosecθ+cotθ)(cosecθcotθ)=1 13×(cosecθcotθ)=1 cozecθ+cotθ=13 cosecθcotθ=3 2cosecθ=13+3=43 cosecθ=23sinθ=32=sinπ3orsin(ππ3)=sin2π3 2cotθ=1332cotθ=23 cotθ=13tanθ=3=tan(ππ3)=tan2π3 sothesolutionis2π3

Answered by MJS last updated on 29/Oct/19

cot θ +cosec θ =(1/(√3))  (1/(tan θ))+(1/(sin θ))=(1/(√3))  ((1+cos θ)/(sin θ))=(1/(√3))  (1/(tan (θ/2)))=(1/(√3))  tan (θ/2) =(√3)  θ=((2π)/3)+2nπ  0<θ≤2π ⇒ θ=((2π)/3)

cotθ+cosecθ=13 1tanθ+1sinθ=13 1+cosθsinθ=13 1tanθ2=13 tanθ2=3 θ=2π3+2nπ 0<θ2πθ=2π3

Terms of Service

Privacy Policy

Contact: info@tinkutara.com