Question and Answers Forum

All Questions      Topic List

Arithmetic Questions

Previous in All Question      Next in All Question      

Previous in Arithmetic      Next in Arithmetic      

Question Number 7263 by Tawakalitu. last updated on 19/Aug/16

Commented by Rasheed Soomro last updated on 20/Aug/16

I have answered your question#6852  which is very resembling to this question.  Please see if you have not seen yet.

$${I}\:{have}\:{answered}\:{your}\:{question}#\mathrm{6852} \\ $$$${which}\:{is}\:{very}\:{resembling}\:{to}\:{this}\:{question}. \\ $$$${Please}\:{see}\:{if}\:{you}\:{have}\:{not}\:{seen}\:{yet}. \\ $$

Commented by Rasheed Soomro last updated on 20/Aug/16

Equilateral triangle?

$${Equilateral}\:{triangle}? \\ $$

Answered by Rasheed Soomro last updated on 23/Aug/16

Angles in terms of a,b,x and  y.  (For diagram see the comment below)  Assumed that the given triangle is equilateral.  I-E  AB=BC=AC⇒∠A=∠B=∠C=60°  a+c=∠A=60⇒ c=60−a  b+d=∠B=60⇒ d=60−b  In △ABF:a+b+∠1=180⇒∠1=180−a−b  (Other ∠1 is vertical angle of this.)  ∠1+∠2=180⇒∠2=180−∠1=a+b  In △AFB:c+∠2+∠3=180⇒∠3=180−∠2−c                                       =180−a−b−60+a =120−b  In △BFE:d+∠2+∠4=180⇒∠4=180−∠2−d                                        =180−a−b−60+b =120−a  ∠3+x+∠5=180:∠5=180−∠3−x                                         =180−120+b−x=60+b−x  In △DEF:x+y+∠1=180⇒y=180−x−∠1                                         =180−x−180+a+b=a+b−x  ∠4+y+∠6=180:∠6=180−∠4−y                                        =180−120+a−a−b+x=60−b+x  Determining x and  y  In △AEC, according to sine law:  (Let AB=BC=AC=1)               ((CE)/(sin c))=((AC)/(sin(y+∠6) ))              ((CE)/(sin(60−a) ))=(1/(sin(a+b−x+60−b+x) ))               ((CE)/(sin(60−a) ))=(1/(sin(a+60) ))                           CE=((sin(60−a))/(sin(60+a)))               =((sin 60 cos a−cos 60 sin a)/(sin 60 cos a+cos 60 sin a))  In △BDC, by sine law:              ((CD)/(sin d))=((BC)/(sin(x+∠5) ))             ((CD)/(sin(60−b) ))=(1/(sin(x+60+b−x) ))             CD=((sin(60−b))/(sin(60+b) ))  In △CDE,by sine law         ((CD)/(sin ∠6))=((CE)/(sin ∠5))         ((CD)/(CE))=((sin ∠6)/(sin ∠5))      ((sin(60−b))/(sin(60+b) ))/((sin(60−a))/(sin(60+a)))=((sin(60−b+x))/(sin(60+b−x)))  ((sin(60−b) sin(60+a))/(sin(60+b) sin(60−a)))=((sin(60−b+x))/(sin(60+b−x)))=((sin(60−(b−x)) )/(sin(60+(b−x) ))  ((sin(60−b) sin(60+a)(=A^(Let) ))/(sin(60+b) sin(60−a)(=B^(Let) )))=((sin 60 cos(b−x)−cos 60 sin(b−x)  )/(sin 60 cos(b−x)+cos 60 sin(b−x)))      (A/B)=((sin 60 cos(b−x)−cos 60 sin(b−x))/(sin 60 cos(b−x)+cos 60 sin(b−x)))  Continu to my comment below.

$${Angles}\:{in}\:{terms}\:{of}\:{a},{b},{x}\:{and}\:\:{y}. \\ $$$$\left({For}\:{diagram}\:{see}\:{the}\:{comment}\:{below}\right) \\ $$$${Assumed}\:{that}\:{the}\:{given}\:{triangle}\:{is}\:{equilateral}. \\ $$$$\mathcal{I}-\mathcal{E}\:\:{AB}={BC}={AC}\Rightarrow\angle{A}=\angle{B}=\angle{C}=\mathrm{60}° \\ $$$${a}+{c}=\angle{A}=\mathrm{60}\Rightarrow\:{c}=\mathrm{60}−{a} \\ $$$${b}+{d}=\angle{B}=\mathrm{60}\Rightarrow\:{d}=\mathrm{60}−{b} \\ $$$${In}\:\bigtriangleup{ABF}:{a}+{b}+\angle\mathrm{1}=\mathrm{180}\Rightarrow\angle\mathrm{1}=\mathrm{180}−{a}−{b} \\ $$$$\left({Other}\:\angle\mathrm{1}\:{is}\:{vertical}\:{angle}\:{of}\:{this}.\right) \\ $$$$\angle\mathrm{1}+\angle\mathrm{2}=\mathrm{180}\Rightarrow\angle\mathrm{2}=\mathrm{180}−\angle\mathrm{1}={a}+{b} \\ $$$${In}\:\bigtriangleup{AFB}:{c}+\angle\mathrm{2}+\angle\mathrm{3}=\mathrm{180}\Rightarrow\angle\mathrm{3}=\mathrm{180}−\angle\mathrm{2}−{c} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\mathrm{180}−{a}−{b}−\mathrm{60}+{a}\:=\mathrm{120}−{b} \\ $$$${In}\:\bigtriangleup{BFE}:{d}+\angle\mathrm{2}+\angle\mathrm{4}=\mathrm{180}\Rightarrow\angle\mathrm{4}=\mathrm{180}−\angle\mathrm{2}−{d} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\mathrm{180}−{a}−{b}−\mathrm{60}+{b}\:=\mathrm{120}−{a} \\ $$$$\angle\mathrm{3}+{x}+\angle\mathrm{5}=\mathrm{180}:\angle\mathrm{5}=\mathrm{180}−\angle\mathrm{3}−{x} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\mathrm{180}−\mathrm{120}+{b}−{x}=\mathrm{60}+{b}−{x} \\ $$$${In}\:\bigtriangleup{DEF}:{x}+{y}+\angle\mathrm{1}=\mathrm{180}\Rightarrow{y}=\mathrm{180}−{x}−\angle\mathrm{1} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\mathrm{180}−{x}−\mathrm{180}+{a}+{b}={a}+{b}−{x} \\ $$$$\angle\mathrm{4}+{y}+\angle\mathrm{6}=\mathrm{180}:\angle\mathrm{6}=\mathrm{180}−\angle\mathrm{4}−{y} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\mathrm{180}−\mathrm{120}+{a}−{a}−{b}+{x}=\mathrm{60}−{b}+{x} \\ $$$$\mathcal{D}{etermining}\:{x}\:{and}\:\:{y} \\ $$$${In}\:\bigtriangleup{AEC},\:{according}\:{to}\:{sine}\:{law}: \\ $$$$\left({Let}\:{AB}={BC}={AC}=\mathrm{1}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\frac{{CE}}{\mathrm{sin}\:{c}}=\frac{{AC}}{\mathrm{sin}\left({y}+\angle\mathrm{6}\right)\:} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\frac{{CE}}{\mathrm{sin}\left(\mathrm{60}−{a}\right)\:}=\frac{\mathrm{1}}{\mathrm{sin}\left({a}+{b}−{x}+\mathrm{60}−{b}+{x}\right)\:}\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\frac{{CE}}{\mathrm{sin}\left(\mathrm{60}−{a}\right)\:}=\frac{\mathrm{1}}{\mathrm{sin}\left({a}+\mathrm{60}\right)\:} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{CE}=\frac{\mathrm{sin}\left(\mathrm{60}−{a}\right)}{\mathrm{sin}\left(\mathrm{60}+{a}\right)} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:=\frac{\mathrm{sin}\:\mathrm{60}\:\mathrm{cos}\:{a}−\mathrm{cos}\:\mathrm{60}\:\mathrm{sin}\:{a}}{\mathrm{sin}\:\mathrm{60}\:\mathrm{cos}\:{a}+\mathrm{cos}\:\mathrm{60}\:\mathrm{sin}\:{a}} \\ $$$${In}\:\bigtriangleup{BDC},\:{by}\:{sine}\:{law}: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\frac{{CD}}{\mathrm{sin}\:{d}}=\frac{{BC}}{\mathrm{sin}\left({x}+\angle\mathrm{5}\right)\:} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\frac{{CD}}{\mathrm{sin}\left(\mathrm{60}−{b}\right)\:}=\frac{\mathrm{1}}{\mathrm{sin}\left({x}+\mathrm{60}+{b}−{x}\right)\:} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:{CD}=\frac{\mathrm{sin}\left(\mathrm{60}−{b}\right)}{\mathrm{sin}\left(\mathrm{60}+{b}\right)\:} \\ $$$${In}\:\bigtriangleup{CDE},{by}\:{sine}\:{law} \\ $$$$\:\:\:\:\:\:\:\frac{{CD}}{\mathrm{sin}\:\angle\mathrm{6}}=\frac{{CE}}{\mathrm{sin}\:\angle\mathrm{5}} \\ $$$$\:\:\:\:\:\:\:\frac{{CD}}{{CE}}=\frac{\mathrm{sin}\:\angle\mathrm{6}}{\mathrm{sin}\:\angle\mathrm{5}} \\ $$$$\:\:\:\:\frac{\mathrm{sin}\left(\mathrm{60}−{b}\right)}{\mathrm{sin}\left(\mathrm{60}+{b}\right)\:}/\frac{\mathrm{sin}\left(\mathrm{60}−{a}\right)}{\mathrm{sin}\left(\mathrm{60}+{a}\right)}=\frac{\mathrm{sin}\left(\mathrm{60}−{b}+{x}\right)}{\mathrm{sin}\left(\mathrm{60}+{b}−{x}\right)} \\ $$$$\frac{\mathrm{sin}\left(\mathrm{60}−{b}\right)\:\mathrm{sin}\left(\mathrm{60}+{a}\right)}{\mathrm{sin}\left(\mathrm{60}+{b}\right)\:\mathrm{sin}\left(\mathrm{60}−{a}\right)}=\frac{\mathrm{sin}\left(\mathrm{60}−{b}+{x}\right)}{\mathrm{sin}\left(\mathrm{60}+{b}−{x}\right)}=\frac{\mathrm{sin}\left(\mathrm{60}−\left({b}−{x}\right)\right)\:}{\mathrm{sin}\left(\mathrm{60}+\left({b}−{x}\right)\:\right.} \\ $$$$\frac{\mathrm{sin}\left(\mathrm{60}−{b}\right)\:\mathrm{sin}\left(\mathrm{60}+{a}\right)\left(\overset{{Let}} {={A}}\right)}{\mathrm{sin}\left(\mathrm{60}+{b}\right)\:\mathrm{sin}\left(\mathrm{60}−{a}\right)\left(\overset{{Let}} {={B}}\right)}=\frac{\mathrm{sin}\:\mathrm{60}\:\mathrm{cos}\left({b}−{x}\right)−\mathrm{cos}\:\mathrm{60}\:\mathrm{sin}\left({b}−{x}\right)\:\:}{\mathrm{sin}\:\mathrm{60}\:\mathrm{cos}\left({b}−{x}\right)+\mathrm{cos}\:\mathrm{60}\:\mathrm{sin}\left({b}−{x}\right)} \\ $$$$\:\:\:\:\frac{{A}}{{B}}=\frac{\mathrm{sin}\:\mathrm{60}\:\mathrm{cos}\left({b}−{x}\right)−\mathrm{cos}\:\mathrm{60}\:\mathrm{sin}\left({b}−{x}\right)}{\mathrm{sin}\:\mathrm{60}\:\mathrm{cos}\left({b}−{x}\right)+\mathrm{cos}\:\mathrm{60}\:\mathrm{sin}\left({b}−{x}\right)} \\ $$$${Continu}\:{to}\:{my}\:{comment}\:{below}. \\ $$

Commented by Rasheed Soomro last updated on 20/Aug/16

Commented by Tawakalitu. last updated on 21/Aug/16

Wow, thank you for your help

$${Wow},\:{thank}\:{you}\:{for}\:{your}\:{help} \\ $$

Commented by Tawakalitu. last updated on 21/Aug/16

looking forward for the remaining solution.

$${looking}\:{forward}\:{for}\:{the}\:{remaining}\:{solution}. \\ $$

Commented by Tawakalitu. last updated on 21/Aug/16

i really appreciate your effort

$${i}\:{really}\:{appreciate}\:{your}\:{effort} \\ $$

Commented by Tawakalitu. last updated on 21/Aug/16

God bless you

$${God}\:{bless}\:{you} \\ $$

Commented by Tawakalitu. last updated on 21/Aug/16

Am with you sir

$${Am}\:{with}\:{you}\:{sir} \\ $$

Commented by Tawakalitu. last updated on 21/Aug/16

Thanks so much sir.

$${Thanks}\:{so}\:{much}\:{sir}. \\ $$

Commented by Rasheed Soomro last updated on 22/Aug/16

Continue from answer  (A/B)=((sin 60 cos(b−x)−cos 60 sin(b−x))/(sin 60 cos(b−x)+cos 60 sin(b−x)))  (A/B)=((1−((cos 60 sin(b−x))/(sin 60 cos(b−x))))/(1+((cos 60 sin(b−x))/(sin 60 cos(b−x)))))  A+Acot 60 tan(b−x)=B−Bcot 60 tan(b−x)  Acot 60 tan(b−x)+Bcot 60 tan(b−x)=B−A  cot 60 tan(b−x)[A+B]=B−A  cot 60 tan(b−x)=((B−A)/(B+A))  tan(b−x)=((B−A)/((B+A)cot 60))  b−x=tan^(−1) (((B−A)/((B+A)cot 60)))  x=b−tan^(−1) (((B−A)/((B+A)×((√3)/3))))  x=b−tan^(−1) (((3(B−A))/((√3)(B+A))))  In △DEF,         y+x+∠1=180        y=180−x−∠1       y=180−(b−tan^(−1) (((B−A)/((B+A)cot 60))))−(180−a−b)       y=180−b+tan^(−1) (((B−A)/((B+A)cot 60)))−180+a+b)           y=a+tan^(−1) (((B−A)/((B+A)×((√3)/3))))         y=a+tan^(−1) (((3(B−A))/((√3)(B+A))))         x=b−tan^(−1) (((3(B−A))/((√3)(B+A))))    Where  A=sin(60−b) sin(60+a)                  B=sin(60+b) sin(60−a)      Answer completed.

$${Continue}\:{from}\:{answer} \\ $$$$\frac{{A}}{{B}}=\frac{\mathrm{sin}\:\mathrm{60}\:\mathrm{cos}\left({b}−{x}\right)−\mathrm{cos}\:\mathrm{60}\:\mathrm{sin}\left({b}−{x}\right)}{\mathrm{sin}\:\mathrm{60}\:\mathrm{cos}\left({b}−{x}\right)+\mathrm{cos}\:\mathrm{60}\:\mathrm{sin}\left({b}−{x}\right)} \\ $$$$\frac{{A}}{{B}}=\frac{\mathrm{1}−\frac{\mathrm{cos}\:\mathrm{60}\:\mathrm{sin}\left({b}−{x}\right)}{\mathrm{sin}\:\mathrm{60}\:\mathrm{cos}\left({b}−{x}\right)}}{\mathrm{1}+\frac{\mathrm{cos}\:\mathrm{60}\:\mathrm{sin}\left({b}−{x}\right)}{\mathrm{sin}\:\mathrm{60}\:\mathrm{cos}\left({b}−{x}\right)}} \\ $$$${A}+{A}\mathrm{cot}\:\mathrm{60}\:\mathrm{tan}\left({b}−{x}\right)={B}−{B}\mathrm{cot}\:\mathrm{60}\:\mathrm{tan}\left({b}−{x}\right) \\ $$$${A}\mathrm{cot}\:\mathrm{60}\:\mathrm{tan}\left({b}−{x}\right)+{B}\mathrm{cot}\:\mathrm{60}\:\mathrm{tan}\left({b}−{x}\right)={B}−{A} \\ $$$$\mathrm{cot}\:\mathrm{60}\:\mathrm{tan}\left({b}−{x}\right)\left[{A}+{B}\right]={B}−{A} \\ $$$$\mathrm{cot}\:\mathrm{60}\:\mathrm{tan}\left({b}−{x}\right)=\frac{{B}−{A}}{{B}+{A}} \\ $$$$\mathrm{tan}\left({b}−{x}\right)=\frac{{B}−{A}}{\left({B}+{A}\right)\mathrm{cot}\:\mathrm{60}} \\ $$$${b}−{x}=\mathrm{tan}^{−\mathrm{1}} \left(\frac{{B}−{A}}{\left({B}+{A}\right)\mathrm{cot}\:\mathrm{60}}\right) \\ $$$${x}={b}−\mathrm{tan}^{−\mathrm{1}} \left(\frac{{B}−{A}}{\left({B}+{A}\right)×\frac{\sqrt{\mathrm{3}}}{\mathrm{3}}}\right) \\ $$$${x}={b}−\mathrm{tan}^{−\mathrm{1}} \left(\frac{\mathrm{3}\left({B}−{A}\right)}{\sqrt{\mathrm{3}}\left({B}+{A}\right)}\right) \\ $$$${In}\:\bigtriangleup{DEF}, \\ $$$$\:\:\:\:\:\:\:{y}+{x}+\angle\mathrm{1}=\mathrm{180} \\ $$$$\:\:\:\:\:\:{y}=\mathrm{180}−{x}−\angle\mathrm{1} \\ $$$$\:\:\:\:\:{y}=\mathrm{180}−\left({b}−\mathrm{tan}^{−\mathrm{1}} \left(\frac{{B}−{A}}{\left({B}+{A}\right)\mathrm{cot}\:\mathrm{60}}\right)\right)−\left(\mathrm{180}−{a}−{b}\right) \\ $$$$\left.\:\:\:\:\:{y}=\mathrm{180}−{b}+\mathrm{tan}^{−\mathrm{1}} \left(\frac{{B}−{A}}{\left({B}+{A}\right)\mathrm{cot}\:\mathrm{60}}\right)−\mathrm{180}+{a}+{b}\right) \\ $$$$ \\ $$$$\:\:\:\:\:\:\:{y}={a}+\mathrm{tan}^{−\mathrm{1}} \left(\frac{{B}−{A}}{\left({B}+{A}\right)×\frac{\sqrt{\mathrm{3}}}{\mathrm{3}}}\right) \\ $$$$\:\:\:\:\:\:\:{y}={a}+\mathrm{tan}^{−\mathrm{1}} \left(\frac{\mathrm{3}\left({B}−{A}\right)}{\sqrt{\mathrm{3}}\left({B}+{A}\right)}\right) \\ $$$$\:\:\:\:\:\:\:{x}={b}−\mathrm{tan}^{−\mathrm{1}} \left(\frac{\mathrm{3}\left({B}−{A}\right)}{\sqrt{\mathrm{3}}\left({B}+{A}\right)}\right) \\ $$$$ \\ $$$${Where}\:\:{A}=\mathrm{sin}\left(\mathrm{60}−{b}\right)\:\mathrm{sin}\left(\mathrm{60}+{a}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{B}=\mathrm{sin}\left(\mathrm{60}+{b}\right)\:\mathrm{sin}\left(\mathrm{60}−{a}\right) \\ $$$$ \\ $$$$ \\ $$$${Answer}\:{completed}. \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\: \\ $$

Commented by Tawakalitu. last updated on 23/Aug/16

Seriously this is a great work. God will help you too

$${Seriously}\:{this}\:{is}\:{a}\:{great}\:{work}.\:{God}\:{will}\:{help}\:{you}\:{too} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com