Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 72665 by TawaTawa last updated on 31/Oct/19

∫_( 2) ^( 3)   ((tan^(−1) (x))/(1 − x^2 )) dx

23tan1(x)1x2dx

Commented by mind is power last updated on 31/Oct/19

non close value we have to  use Li_2 (x) function

nonclosevaluewehavetouseLi2(x)function

Commented by TawaTawa last updated on 31/Oct/19

Help sir

Helpsir

Commented by mathmax by abdo last updated on 31/Oct/19

let I =∫_2 ^3  ((arctan(x))/(1−x^2 ))dx =_(x=2+t)    ∫_0 ^1   ((arctan(2+t))/(1−(2+t)^2 ))dt  =−∫_0 ^1  ((arctan(2+t))/((t+2)^2 −1))dt =−∫_0 ^1   ((arctan(t+2))/((t+1)(t+3)))dt  =−(1/2)∫_0 ^1    arctan(t+2)((1/(t+1))−(1/(t+3)))dt  =(1/2)∫_0 ^1   ((arctan(t+2))/(t+3))dt−(1/2)∫_0 ^1   ((arctan(t+2))/(t+1))dt  =(1/2)H−(1/2)K    H=∫_0 ^1  ((arctan(t+2))/(t+3))dt and K=∫_0 ^1  ((arctan(t+2))/(t+1))dt  let f(x)=∫_0 ^1  ((arctan(t+x))/(t+3))dt  with x≥0 ⇒  f^′ (x)=∫_0 ^1     (1/((t+3)(1+(t+x)^2 )))dt =∫_0 ^1   (dt/((t+3)(t^2  +2xt  +x^2  +1)))  let decompose F(t)=(1/((t+3)(t^2  +2xt +x^2  +1)))  F(t)=(a/(t+3)) +((bt +c)/(t^2  +2xt +x^2  +1))  a =(1/(10−6x +x^2 ))  lim_(t→+∞) tF(t)=0=a+b ⇒b=((−1)/(x^2 −6x +10))  F(0)=(1/(3(x^2  +1))) =(a/3) +(c/(x^2  +1)) ⇒(1/3) =((x^2  +1)/3)a +c ⇒  1=(x^2  +1)a +3c ⇒3c=1−(x^2  +1)×(1/(x^2 −6x +10))  ⇒c =(1/3)(1−((x^2  +1)/(x^2 −6x +10)))  ∫_0 ^1  F(t)dt =a ∫_0 ^1  (dt/(t+3)) +(b/2) ∫_0 ^1  ((2t +2x−2x )/(t^2  +2xt +x^2  +1))dt  =a[ln(t+3)]_0 ^1   +(b/2)ln(t^2  +2xt +x^2  +1)]_0 ^x  +c ∫_0 ^1   (dt/(t^2  +2xt +x^2  +1))  ∫_0 ^1   (dt/(t^2  +2xt +x^2  +1)) =∫_0 ^1  (dt/((t+x)^2  +1)) =_(t+x=u)    ∫_x ^(x+1)  (du/(1+u^2 ))  =arctan(x+1)−arctanx ⇒  f^′ (x)=a{ln((4/3))}+(b/2)(ln(4x^2 +1)−ln(x^2 +1)+c(arctan(x+1)−arctanx)  ⇒f(x)=aln((4/3))x +(b/2)∫ln(((4x^2 +1)/(x^2 +1)))dx +c∫ (arctan(x+1)−arctan(x))dx +c  ....be continued....

letI=23arctan(x)1x2dx=x=2+t01arctan(2+t)1(2+t)2dt=01arctan(2+t)(t+2)21dt=01arctan(t+2)(t+1)(t+3)dt=1201arctan(t+2)(1t+11t+3)dt=1201arctan(t+2)t+3dt1201arctan(t+2)t+1dt=12H12KH=01arctan(t+2)t+3dtandK=01arctan(t+2)t+1dtletf(x)=01arctan(t+x)t+3dtwithx0f(x)=011(t+3)(1+(t+x)2)dt=01dt(t+3)(t2+2xt+x2+1)letdecomposeF(t)=1(t+3)(t2+2xt+x2+1)F(t)=at+3+bt+ct2+2xt+x2+1a=1106x+x2limt+tF(t)=0=a+bb=1x26x+10F(0)=13(x2+1)=a3+cx2+113=x2+13a+c1=(x2+1)a+3c3c=1(x2+1)×1x26x+10c=13(1x2+1x26x+10)01F(t)dt=a01dtt+3+b2012t+2x2xt2+2xt+x2+1dt=a[ln(t+3)]01+b2ln(t2+2xt+x2+1)]0x+c01dtt2+2xt+x2+101dtt2+2xt+x2+1=01dt(t+x)2+1=t+x=uxx+1du1+u2=arctan(x+1)arctanxf(x)=a{ln(43)}+b2(ln(4x2+1)ln(x2+1)+c(arctan(x+1)arctanx)f(x)=aln(43)x+b2ln(4x2+1x2+1)dx+c(arctan(x+1)arctan(x))dx+c....becontinued....

Commented by TawaTawa last updated on 01/Nov/19

God bless you sir.  Waiting for the rest sir  Thanks for your time sir.

Godblessyousir.WaitingfortherestsirThanksforyourtimesir.

Commented by mathmax by abdo last updated on 01/Nov/19

you are welcome.

youarewelcome.

Answered by mind is power last updated on 31/Oct/19

let u=tan^(−1) (x)  ⇒x=tg(u)⇒dx=(1+tg^2 (u) )du  ∫_2 ^3 ((tan^(−1) (x))/(1−x^2 ))dx=∫_(tan^− (2)) ^(tsn^− (3)) ((u.(1+tg^2 (u))du)/(1−tg^2 (u)))  =∫−udu+2∫((udu)/(1−tg^2 (u)))  −ln(u)+2∫((udu)/(1−(((e^(iu) −e^(−iu) )/(i(e^(iu) +e^(−iu) ))))^2 ))2∫((udu.)/(((e^(iu) +e^(−iu) )^2 +(e^(iu) −e^(−iu) )^2 )/((e^(iu) +e^(−iu) )^2 )))  =2∫((u(e^(2iu) +e^(−2iu) +2))/(2e^(2iu) +2e^(−2iu) ))du=∫udu+2∫((udu)/(e^(2iu) +e^(−2iu) ))  =2∫((ue^(2iu) du)/(1+e^(4iu) ))=2∫((ue^(2iu) du)/((e^(2iu) +i)(e^(2iu) −i)))=∫((udu)/(e^(2iu) +i))+∫((udu)/(e^(2iu) −i))  =∫((udu)/((e^(iu) +e^(−i(π/4)) )(e^(iu) −e^((−iπ)/4) )))+∫((udu)/((e^(iu) +e^(i(π/4)) )(e^(iu) −e^((iπ)/4) )))  =(1/(2e^((−iπ)/4) )){∫((udu)/(e^(iu) −e^((−iπ)/4) ))−∫((udu)/(e^(iu) +e^((−iπ)/4) ))}+(1/(2e^((iπ)/4) )){∫((udu)/(e^(iu) −e^((iπ)/4) ))−∫((udu)/(e^(iu) +e^((iπ)/4) ))}  =(e^(i(π/2)) /2){∫(u/(e^(i(u+(π/4))) −1))du}−(e^(−i(π/2)) /2){∫((udu)/(e^(i(u−((3π)/4))) −1))}+(e^(−i(π/2)) /2){∫((udu)/(e^(i(u−(π/4))) −1))}−(e^(i(π/2)) /2)∫((udu)/(e^(i(u+((3π)/4))) −1))  ∫_1 ^(1−z) ((ln(t))/(1−t))=Li_2 (z)  ∫_(tan^− (2)) ^(tan^− (3)) ((udu)/(e^(i(u+c)) −1))du  w=e^(i(u+c)) ⇒u=−iln(w)−c⇒du=((−idw)/w)  ⇒∫_e^(i(tan^− (2)+c))  ^e^(i(tan^− (3)+c))  ((−iln(w)−c)/(w−1)).−i(dw/w)  =∫((−ln(w)+ic)/(w(w−1)))=∫((−ln(w)+ic)/(w−1))+∫((ln(w))/w)dw−∫((icdw)/w)  =−Li_2 (1−e^(i(tan^− (3)+c)) )+li_2 (1−e^(i(tan^(−2) +c)) )+iclog((e^(i(tan^− (3)+c)) /e^(i(tan^− (2)+c)) ))+log(((itan^− (3)+ic)/(itan^− (2)+ic)))−ic(itan^− (3)−itan^− (2))  put this for c=i(π/4),((−3iπ)/4),((−iπ)/4),((3iπ)/4)

letu=tan1(x)x=tg(u)dx=(1+tg2(u))du23tan1(x)1x2dx=tan(2)tsn(3)u.(1+tg2(u))du1tg2(u)=udu+2udu1tg2(u)ln(u)+2udu1(eiueiui(eiu+eiu))22udu.(eiu+eiu)2+(eiueiu)2(eiu+eiu)2=2u(e2iu+e2iu+2)2e2iu+2e2iudu=udu+2udue2iu+e2iu=2ue2iudu1+e4iu=2ue2iudu(e2iu+i)(e2iui)=udue2iu+i+udue2iui=udu(eiu+eiπ4)(eiueiπ4)+udu(eiu+eiπ4)(eiueiπ4)=12eiπ4{udueiueiπ4udueiu+eiπ4}+12eiπ4{udueiueiπ4udueiu+eiπ4}=eiπ22{uei(u+π4)1du}eiπ22{uduei(u3π4)1}+eiπ22{uduei(uπ4)1}eiπ22uduei(u+3π4)111zln(t)1t=Li2(z)tan(2)tan(3)uduei(u+c)1duw=ei(u+c)u=iln(w)cdu=idwwei(tan(2)+c)ei(tan(3)+c)iln(w)cw1.idww=ln(w)+icw(w1)=ln(w)+icw1+ln(w)wdwicdww=Li2(1ei(tan(3)+c))+li2(1ei(tan2+c))+iclog(ei(tan(3)+c)ei(tan(2)+c))+log(itan(3)+icitan(2)+ic)ic(itan(3)itan(2))putthisforc=iπ4,3iπ4,iπ4,3iπ4

Commented by TawaTawa last updated on 31/Oct/19

Wow, God bless you sir.  I appreciate your time sir

Wow,Godblessyousir.Iappreciateyourtimesir

Commented by mind is power last updated on 31/Oct/19

most Welcom

mostWelcom

Terms of Service

Privacy Policy

Contact: info@tinkutara.com