Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 72746 by aliesam last updated on 01/Nov/19

Σ_(n=0) ^∞ (1/((5n)!))

n=01(5n)!

Answered by mind is power last updated on 01/Nov/19

1+z+z^2 +z^3 +z^4 =0⇒Z=e^((2ikπ)/5) ,k∈{1,2,3,4}   e^e^(i((2π)/5))  =Σ(e^((2ikπ)/5) /(k!))=Σ_(r=0) ^4 Σ_(k=0) ^(+∞) (e^(((2iπ)/5)r) /((5k+r)!))  e^e^((i4π)/5)  =Σ_(k≥0) ^ (e^((4ikπ)/5) /(k!))=Σ_(r=0) ^4 Σ_(k=0) ^(+∞) (e^((4iπr)/5) /((5k+r)!))  e^e^((6iπ)/5)  =Σ(e^((6ikπ)/5) /(k!))=Σ_(r=0) ^4 Σ_(k≥0) (e^((6irπ)/5) /((5k+r)!))  e^e^((8iπ)/5)  =Σ(e^((8ikπ)/5) /(k!))=Σ_(r=0) ^4 Σ_(k≥0) (e^((8irπ)/5) /((5k+r)!))  e^1 =Σ_(k≥0) ^(+∞) (1/(k!))=Σ_(r=0) ^4 Σ_(k≥0) (1/((5k+r)!))  ⇒Σ_(j=0) ^4 e^e^((2iπj)/5)   =Σ_(r=0) ^4 Σ_(k≥0) ((Σ_(j=0) ^4 e^((2ijπr)/5) )/((5k+r)!))  we have if r≠0  Σ_(j=0) ^4 e^((2ijπr)/5) =0  cause =((1−(e^(2iπr) ))/(1+e^((i2πr)/5) ))  ⇒Σ_(j=0) ^4 e^e^((2iπj)/5)   =Σ_(r=0) ^4 Σ_(k≥0) ((Σ_(j=0) ^4 e^((2ijπr)/5) )/((5k+r)!))=Σ_(r=0) ^0 Σ_(k≥0) (5/((5k+r)!))=5Σ_(k≥0) (1/((5k)!))  ⇒Σ_(k≥0) (1/((5k)!))=((e^e^((2iπ)/5)  +e^e^((4iπ)/5)  +e^e^((6iπ)/5)  +e^e^((8iπ)/5)  +e^1 )/5)  we can generslise this  ⇒Σ_(k=0) ^(+∞) (1/((ak)!))=((Σ_(j=0) ^(a−1) e^e^((2iπj)/a)  )/a)

1+z+z2+z3+z4=0Z=e2ikπ5,k{1,2,3,4}eei2π5=Σe2ikπ5k!=4r=0+k=0e2iπ5r(5k+r)!eei4π5=k0e4ikπ5k!=4r=0+k=0e4iπr5(5k+r)!ee6iπ5=Σe6ikπ5k!=4r=0k0e6irπ5(5k+r)!ee8iπ5=Σe8ikπ5k!=4r=0k0e8irπ5(5k+r)!e1=+k01k!=4r=0k01(5k+r)!4j=0ee2iπj5=4r=0k04j=0e2ijπr5(5k+r)!wehaveifr04j=0e2ijπr5=0cause=1(e2iπr)1+ei2πr54j=0ee2iπj5=4r=0k04j=0e2ijπr5(5k+r)!=0r=0k05(5k+r)!=5k01(5k)!k01(5k)!=ee2iπ5+ee4iπ5+ee6iπ5+ee8iπ5+e15wecangenerslisethis+k=01(ak)!=a1j=0ee2iπjaa

Commented by aliesam last updated on 01/Nov/19

god bless you sir

godblessyousir

Terms of Service

Privacy Policy

Contact: info@tinkutara.com