Question and Answers Forum

All Questions      Topic List

Mechanics Questions

Previous in All Question      Next in All Question      

Previous in Mechanics      Next in Mechanics      

Question Number 72803 by mr W last updated on 03/Nov/19

Commented by mr W last updated on 03/Nov/19

a ball is thrown from point A with a  speed u. after striking a point on the  inclined plane, it returns back to its  original position. if the coefficient of  restitution is e, how large must u be  such that the motion of the ball as  described is possible.

aballisthrownfrompointAwithaspeedu.afterstrikingapointontheinclinedplane,itreturnsbacktoitsoriginalposition.ifthecoefficientofrestitutionise,howlargemustubesuchthatthemotionoftheballasdescribedispossible.

Answered by ajfour last updated on 03/Nov/19

Commented by ajfour last updated on 04/Nov/19

It gets complicated Sir, i tried  but posted and deleted..

ItgetscomplicatedSir,itriedbutpostedanddeleted..

Commented by mr W last updated on 04/Nov/19

thanks for trying sir!  it is really complicated.

thanksfortryingsir!itisreallycomplicated.

Commented by ajfour last updated on 04/Nov/19

let tan θ=s, tan α=m, tan δ=n  H=sD−((gD^2 (1+s^2 ))/(2u^2 ))         ....(i)  −H=nD−((gD^2 (1+n^2 ))/(2v_2 ^2 ))      ...(ii)   mD=h+H                           ...(iii)  v_1 ^2 =u^2 −2gH                         ...(iv)  v_2 cos φ=ev_1 cos ϕ  v_2 sin φ=v_1 sin ϕ  unknowns  u, m, n, D, H, ϕ, φ  v_2 ^2 =v_1 ^2 (e^2 cos^2 ϕ+sin^2 ϕ)  ⇒ v_2 ^2 =(u^2 −2gH)(e^2 cos^2 ϕ+sin^2 ϕ)  etan φ=tan ϕ  tan δ=n=tan (90°−α−φ)  ⇒ n=((1−tan φ)/(m+tan φ))=((e−tan ϕ)/(em+tan ϕ))  tan (90°−α+ϕ)=((√(u^2 sin^2 θ−2gH))/(ucos θ))  ⇒ ((1+mtan ϕ)/(m−tan ϕ))=(√(s^2 −((2gH(1+s^2 ))/u^2 )))                              = f               .....(v)    1+mtan ϕ=mf−ftan ϕ  ⇒  tan ϕ=((mf−1)/(m+f))                ....(vi)    n= ((e−((mf−1)/(m+f)))/(em+((mf−1)/(m+f))))=((em+ef−mf+1)/(em^2 +emf+mf−1))                                               ....(vii)  from (ii)  which is  −H=nD−((gD^2 (1+n^2 ))/(2v_2 ^2 ))  __________________________  −H=nD−((gD^2 (1+n^2 ){(mf−1)^2 +(m+f)^2 })/(2(u^2 −2gH)[e^2 +(mf−1)^2 ]))  −H=(((em+ef−mf+1)/(em^2 +emf+mf−1)))D−((gD^2 {1+(((em+ef−mf+1)/(em^2 +emf+mf−1)))^2 }{(mf−1)^2 +(m+f)^2 })/(2(u^2 −2gH)[e^2 +(mf−1)^2 ]))                                                            ...(1)    where f=(√(s^2 −((2gH(1+s^2 ))/u^2 )))   mD=h+H                          (2) ...(iii)  H=sD−((gD^2 (1+s^2 ))/(2u^2 ))        (3) ....(i)  Now unknowns are u, s, H, D  From  (1), (2), (3) we obtain  a correlation in u and s=tan θ  ...........■

lettanθ=s,tanα=m,tanδ=nH=sDgD2(1+s2)2u2....(i)H=nDgD2(1+n2)2v22...(ii)mD=h+H...(iii)v12=u22gH...(iv)v2cosϕ=ev1cosφv2sinϕ=v1sinφunknownsu,m,n,D,H,φ,ϕv22=v12(e2cos2φ+sin2φ)v22=(u22gH)(e2cos2φ+sin2φ)etanϕ=tanφtanδ=n=tan(90°αϕ)n=1tanϕm+tanϕ=etanφem+tanφtan(90°α+φ)=u2sin2θ2gHucosθ1+mtanφmtanφ=s22gH(1+s2)u2=f.....(v)1+mtanφ=mfftanφtanφ=mf1m+f....(vi)n=emf1m+fem+mf1m+f=em+efmf+1em2+emf+mf1....(vii)from(ii)whichisH=nDgD2(1+n2)2v22__________________________H=nDgD2(1+n2){(mf1)2+(m+f)2}2(u22gH)[e2+(mf1)2]H=(em+efmf+1em2+emf+mf1)DgD2{1+(em+efmf+1em2+emf+mf1)2}{(mf1)2+(m+f)2}2(u22gH)[e2+(mf1)2]...(1)wheref=s22gH(1+s2)u2mD=h+H(2)...(iii)H=sDgD2(1+s2)2u2(3)....(i)Nowunknownsareu,s,H,DFrom(1),(2),(3)weobtainacorrelationinuands=tanθ...........

Commented by mr W last updated on 04/Nov/19

correct way sir!

correctwaysir!

Answered by mr W last updated on 04/Nov/19

Commented by mr W last updated on 04/Nov/19

AB=s  v_1 sin ϕ=v_2 sin φ  ev_1 cos ϕ=v_2 cos φ  ((tan ϕ)/e)=tan φ ⇒sin φ=((tan ϕ)/(√(e^2 +tan^2  ϕ)))=(1/(√(1+(e^2 /(tan^2  ϕ)))))  ⇒φ=tan^(−1) ((tan ϕ)/e)  ⇒v_2 =((sin ϕ)/(sin φ))v=(√(sin^2  ϕ+e^2 cos^2  ϕ)) v  t=((s cos α)/(v cos ((π/2)−α+ϕ)))=((s cos α)/(v sin (α−ϕ)))  −s sin α+h=v cos (α−ϕ) t−((gt^2 )/2)  ((gs^2 cos^2  α)/(2v^2 ))[1+(1/(tan^2  (α−ϕ)))]−[tan α+(1/(tan (α−ϕ)))]s cos α+h=0  ⇒((s cos α)/(2h))=(1/(((2gh)/v^2 )[1+(1/(tan^2  (α−ϕ)))])){tan α+(1/(tan (α−ϕ)))+(√([tan α+(1/(tan (α−ϕ)))]^2 −((2gh)/v^2 )[1+(1/(tan^2  (α−ϕ)))]))}  with V=((2gh)/v^2 )  ⇒((s cos α)/(2h))=(1/(V[1+(1/(tan^2  (α−ϕ)))])){tan α+(1/(tan (α−ϕ)))+(√([tan α+(1/(tan (α−ϕ)))]^2 −V[1+(1/(tan^2  (α−ϕ)))]))}  t=((s cos α)/(v_2  cos ((π/2)−α−φ)))=((s cos α)/(v sin (α+φ)(√(sin^2  ϕ+e^2 cos^2  ϕ))))  −s sin α+h=v_2  cos (α+φ) t−((gt^2 )/2)  −s sin α+h=((s cos α)/(tan (α+φ)))−((gs^2  cos^2  α)/(2v^2 (sin^2  ϕ+e^2 cos^2  ϕ)))[1+(1/(tan^2  (α+φ)))]  ((gs^2  cos^2  α)/(2v^2 (sin^2  ϕ+e^2 cos^2  ϕ)))[1+(1/(tan^2  (α+φ)))]−[tan α+(1/(tan (α+φ)))]s cos α+h=0  ⇒((s cos α)/(2h))=(1/(((2gh)/(v^2 (sin^2  ϕ+e^2 cos^2  ϕ)))[1+(1/(tan^2  (α+tan^(−1) ((tan ϕ)/e))))])){tan α+(1/(tan (α+tan^(−1) ((tan ϕ)/e))))+(√([tan α+(1/(tan (α+tan^(−1) ((tan ϕ)/e))))]^2 −((2gh)/(v^2 (sin^2  ϕ+e^2 cos^2  ϕ)))[1+(1/(tan^2  (α+tan^(−1) ((tan ϕ)/e))))]))}  ⇒((s cos α)/(2h))=(1/((V/((sin^2  ϕ+e^2 cos^2  ϕ)))[1+(1/(tan^2  (α+tan^(−1) ((tan ϕ)/e))))])){tan α+(1/(tan (α+tan^(−1) ((tan ϕ)/e))))+(√([tan α+(1/(tan (α+tan^(−1) ((tan ϕ)/e))))]^2 −(V/((sin^2  ϕ+e^2 cos^2  ϕ)))[1+(1/(tan^2  (α+tan^(−1) ((tan ϕ)/e))))]))}  (1/((V/((sin^2  ϕ+e^2 cos^2  ϕ)))[1+(1/(tan^2  (α+tan^(−1) ((tan ϕ)/e))))])){tan α+(1/(tan (α+tan^(−1) ((tan ϕ)/e))))+(√([tan α+(1/(tan (α+tan^(−1) ((tan ϕ)/e))))]^2 −(V/((sin^2  ϕ+e^2 cos^2  ϕ)))[1+(1/(tan^2  (α+tan^(−1) ((tan ϕ)/e))))]))}=(1/(V[1+(1/(tan^2  (α−ϕ)))])){tan α+(1/(tan (α−ϕ)))+(√([tan α+(1/(tan (α−ϕ)))]^2 −V[1+(1/(tan^2  (α−ϕ)))]))}  ⇒((tan α+(1/(tan (α−ϕ)))+(√([tan α+(1/(tan (α−ϕ)))]^2 −V[1+(1/(tan^2  (α−ϕ)))])))/(tan α+(1/(tan (α+tan^(−1) ((tan ϕ)/e))))+(√([tan α+(1/(tan (α+tan^(−1) ((tan ϕ)/e))))]^2 −(V/((sin^2  ϕ+e^2 cos^2  ϕ)))[1+(1/(tan^2  (α+tan^(−1) ((tan ϕ)/e))))]))))=(((sin^2  ϕ+e^2 cos^2  ϕ)[1+(1/(tan^2  (α−ϕ)))])/([1+(1/(tan^2  (α+tan^(−1) ((tan ϕ)/e))))]))    ...(i)  u^2 =v^2 +2g(s sin α−h)  with U=((2gh)/u^2 )  ((1/U)+1)V=1+((2 tan α)/(1+(1/(tan^2  (α−ϕ))))){tan α+(1/(tan (α−ϕ)))+(√([tan α+(1/(tan (α−ϕ)))]^2 −V[1+(1/(tan^2  (α−ϕ)))]))}

AB=sv1sinφ=v2sinϕev1cosφ=v2cosϕtanφe=tanϕsinϕ=tanφe2+tan2φ=11+e2tan2φϕ=tan1tanφev2=sinφsinϕv=sin2φ+e2cos2φvt=scosαvcos(π2α+φ)=scosαvsin(αφ)ssinα+h=vcos(αφ)tgt22gs2cos2α2v2[1+1tan2(αφ)][tanα+1tan(αφ)]scosα+h=0scosα2h=12ghv2[1+1tan2(αφ)]{tanα+1tan(αφ)+[tanα+1tan(αφ)]22ghv2[1+1tan2(αφ)]}withV=2ghv2scosα2h=1V[1+1tan2(αφ)]{tanα+1tan(αφ)+[tanα+1tan(αφ)]2V[1+1tan2(αφ)]}t=scosαv2cos(π2αϕ)=scosαvsin(α+ϕ)sin2φ+e2cos2φssinα+h=v2cos(α+ϕ)tgt22ssinα+h=scosαtan(α+ϕ)gs2cos2α2v2(sin2φ+e2cos2φ)[1+1tan2(α+ϕ)]gs2cos2α2v2(sin2φ+e2cos2φ)[1+1tan2(α+ϕ)][tanα+1tan(α+ϕ)]scosα+h=0scosα2h=12ghv2(sin2φ+e2cos2φ)[1+1tan2(α+tan1tanφe)]{tanα+1tan(α+tan1tanφe)+[tanα+1tan(α+tan1tanφe)]22ghv2(sin2φ+e2cos2φ)[1+1tan2(α+tan1tanφe)]}scosα2h=1V(sin2φ+e2cos2φ)[1+1tan2(α+tan1tanφe)]{tanα+1tan(α+tan1tanφe)+[tanα+1tan(α+tan1tanφe)]2V(sin2φ+e2cos2φ)[1+1tan2(α+tan1tanφe)]}1V(sin2φ+e2cos2φ)[1+1tan2(α+tan1tanφe)]{tanα+1tan(α+tan1tanφe)+[tanα+1tan(α+tan1tanφe)]2V(sin2φ+e2cos2φ)[1+1tan2(α+tan1tanφe)]}=1V[1+1tan2(αφ)]{tanα+1tan(αφ)+[tanα+1tan(αφ)]2V[1+1tan2(αφ)]}tanα+1tan(αφ)+[tanα+1tan(αφ)]2V[1+1tan2(αφ)]tanα+1tan(α+tan1tanφe)+[tanα+1tan(α+tan1tanφe)]2V(sin2φ+e2cos2φ)[1+1tan2(α+tan1tanφe)]=(sin2φ+e2cos2φ)[1+1tan2(αφ)][1+1tan2(α+tan1tanφe)]...(i)u2=v2+2g(ssinαh)withU=2ghu2(1U+1)V=1+2tanα1+1tan2(αφ){tanα+1tan(αφ)+[tanα+1tan(αφ)]2V[1+1tan2(αφ)]}

Commented by mr W last updated on 04/Nov/19

by solving this quadratic eqn. for V  we get V=f(U) and put it into (i) to  have an eqn. with U and ϕ.

bysolvingthisquadraticeqn.forVwegetV=f(U)andputitinto(i)tohaveaneqn.withUandφ.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com