Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 72813 by Learner-123 last updated on 03/Nov/19

Find the area of the region enclosed  by the line 5y=x+6 and the curve  y=(√(∣x∣)) .

Findtheareaoftheregionenclosedbytheline5y=x+6andthecurvey=x.

Commented by ajfour last updated on 03/Nov/19

Commented by ajfour last updated on 03/Nov/19

5y=x+6  y=(√(∣x∣))  ⇒ for intersection points  (x+6)^2 =25∣x∣  ⇒ x^2 +12x−25∣x∣+36=0  for x>0    x^2 −13x+36=0   x=((13)/2)±(√(((169)/4)−36)) = ((13)/2)±(5/2)   x_B =4,  x_C =9  for x<0  x^2 +37x+36=0  (x+36)(x+1)=0  x_A =−1  Area A=A_1 +A_2 +A_3   A_1 =∫_(−1) ^( 0) (((x+6)/5)−(√(−x)))dx     =[((x^2 +12x)/(10))−(2/3)(−x)^(3/2) ]_(−1) ^0    = (2/3)+((11)/(10))=((53)/(30))  A_2 =∫_0 ^( 4) (((x+6)/5)−(√x))dx       =[((x^2 +12x)/(10))−(2/3)x^(3/2) ]_0 ^4       = ((64)/(10))−((16)/3)=((16)/(15))   A_3 =∫_4 ^( 9) ((√x)−((x+6)/5))dx        = (2/3)x^(3/2) −((x^2 +12x)/(10))       =(2/3)(27−8)−(1/(10))(81+108−16−48)    =((38)/3)−((25)/2)=(1/6)  A=((53)/(30))+((32)/(30))+(5/(30))= 3 sq. units.

5y=x+6y=xforintersectionpoints(x+6)2=25xx2+12x25x+36=0forx>0x213x+36=0x=132±169436=132±52xB=4,xC=9forx<0x2+37x+36=0(x+36)(x+1)=0xA=1AreaA=A1+A2+A3A1=10(x+65x)dx=[x2+12x1023(x)3/2]10=23+1110=5330A2=04(x+65x)dx=[x2+12x1023x3/2]04=6410163=1615A3=49(xx+65)dx=23x3/2x2+12x10=23(278)110(81+1081648)=383252=16A=5330+3230+530=3sq.units.

Commented by Learner-123 last updated on 03/Nov/19

thanks sir.

thankssir.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com