Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 72836 by aliesam last updated on 03/Nov/19

Commented by mathmax by abdo last updated on 04/Nov/19

changement x=(π/3)+t  give  lim_(x→(π/3))   (((√3)cosx−sinx)/(1−2cosx)) =lim_(t→0)    (((√3)cos((π/3)+t)−sin((π/3)+t))/(1−2cos((π/3)+t)))  =lim_(t→0)   (((√3)(cos((π/3))cost −sin((π/3))sint)−(sin((π/3))cost +cos((π/3))sint))/(1−2{cos((π/3))cost −sin((π/3))sint}))  =lim_(t→0)    (((√3)((1/2)cost−((√3)/2)sint)−((√3)/2)cost−(1/2)sint)/(1−2{(1/2)cost−((√3)/2)sint}))  =lim_(t→0)    ((−2sint)/(1−cost+(√3)sint))   =lim_(t→0)     ((−2((sint)/t))/(((1−cost)/t)+(√3)((sint)/t)))  =((−2)/(0+(√3))) =−(2/(√3))  because lim_(t→0)   ((sint)/t) =1 and lim_(t→0)  ((1−cost)/t)=0

changementx=π3+tgivelimxπ33cosxsinx12cosx=limt03cos(π3+t)sin(π3+t)12cos(π3+t)=limt03(cos(π3)costsin(π3)sint)(sin(π3)cost+cos(π3)sint)12{cos(π3)costsin(π3)sint}=limt03(12cost32sint)32cost12sint12{12cost32sint}=limt02sint1cost+3sint=limt02sintt1costt+3sintt=20+3=23becauselimt0sintt=1andlimt01costt=0

Answered by $@ty@m123 last updated on 04/Nov/19

=lim_(x→(π/3)     )      ((2(((√3)/2)cos x−(1/2)sin x))/(2((1/2)−cos x)))   =lim_(x→(π/3)     )      ((sin ((π/3)−x))/(cos (π/3)−cos x))  =lim_(x→(π/3)     )      ((2sin ((π/6)−(x/2))cos ((π/6)−(x/2)))/(−2sin ((π/6)+(x/2))sin ((π/6)−(x/2))))  =lim_(x→(π/3)     )      ((cos ((π/6)−(x/2)))/(−sin ((π/6)+(x/2))))  =((cos 0)/(−sin (π/3)))  =− (1/((√3)/2))  =− (2/(√3))

=limxπ32(32cosx12sinx)2(12cosx)=limxπ3sin(π3x)cosπ3cosx=limxπ32sin(π6x2)cos(π6x2)2sin(π6+x2)sin(π6x2)=limxπ3cos(π6x2)sin(π6+x2)=cos0sinπ3=132=23

Terms of Service

Privacy Policy

Contact: info@tinkutara.com