All Questions Topic List
Limits Questions
Previous in All Question Next in All Question
Previous in Limits Next in Limits
Question Number 72836 by aliesam last updated on 03/Nov/19
Commented by mathmax by abdo last updated on 04/Nov/19
changementx=π3+tgivelimx→π33cosx−sinx1−2cosx=limt→03cos(π3+t)−sin(π3+t)1−2cos(π3+t)=limt→03(cos(π3)cost−sin(π3)sint)−(sin(π3)cost+cos(π3)sint)1−2{cos(π3)cost−sin(π3)sint}=limt→03(12cost−32sint)−32cost−12sint1−2{12cost−32sint}=limt→0−2sint1−cost+3sint=limt→0−2sintt1−costt+3sintt=−20+3=−23becauselimt→0sintt=1andlimt→01−costt=0
Answered by $@ty@m123 last updated on 04/Nov/19
=limx→π32(32cosx−12sinx)2(12−cosx)=limx→π3sin(π3−x)cosπ3−cosx=limx→π32sin(π6−x2)cos(π6−x2)−2sin(π6+x2)sin(π6−x2)=limx→π3cos(π6−x2)−sin(π6+x2)=cos0−sinπ3=−132=−23
Terms of Service
Privacy Policy
Contact: info@tinkutara.com