Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 72841 by indalecioneves last updated on 03/Nov/19

Could someone help me on this question?  Knowing that the area of a circle segment is given by A=R^2 (θ−sinθ)/2. Where A=7m^2 ; R^2 =((28)/π).  What is the best answer for the angle value (degree)  a) 85°<θ<90°  b) 95°<θ<100°  c) 105°<θ<110°  d) 115°<θ<120°  e) 125°<θ<135°

Couldsomeonehelpmeonthisquestion?KnowingthattheareaofacirclesegmentisgivenbyA=R2(θsinθ)/2.WhereA=7m2;R2=28π.Whatisthebestanswerfortheanglevalue(degree)a)85°<θ<90°b)95°<θ<100°c)105°<θ<110°d)115°<θ<120°e)125°<θ<135°

Commented by MJS last updated on 04/Nov/19

there′s information missing  what is m? if m is just a constant factor:  7m^2 =((28)/(2π))(θ−sin θ)  the area of the circle is R^2 π=28  ⇒  0≤7m^2 ≤28  0≤m^2 ≤4  area≥0 ⇒ m≥0  0≤m≤2  ⇒  0≤θ−sin θ≤2π  ⇒  0≤θ≤2π  in degree 0≤θ≤360

theresinformationmissingwhatism?ifmisjustaconstantfactor:7m2=282π(θsinθ)theareaofthecircleisR2π=2807m2280m24area0m00m20θsinθ2π0θ2πindegree0θ360

Commented by indalecioneves last updated on 09/Nov/19

Hello, Sir!  Thanks for attention.  You can only considerer it 1=(2/π).(θ−sinθ), because m^2  means only meters per square.

Hello,Sir!Thanksforattention.Youcanonlyconsidererit1=2π.(θsinθ),becausem2meansonlymeterspersquare.

Commented by MJS last updated on 09/Nov/19

you should have written R^2 =((28)/π)m^2  then it  would have been clear

youshouldhavewrittenR2=28πm2thenitwouldhavebeenclear

Answered by MJS last updated on 09/Nov/19

(1)  7=((28)/(2π))(θ−sin θ)  (2)  generally 0≤θ<2π and −1≤sin θ ≤1  (3)  the area A=7 is a quarter of the area of  the circle which is R^2 π=28    (1)  ⇒ sin θ =θ−(π/2)  (2)  −1≤θ−(π/2)≤1 ⇔ (π/2)−1≤θ≤(π/2)+1       but 0≤θ ⇒ 0≤θ≤(π/2)+1  (3)  ⇒ (π/2)<θ<π       but θ≤(π/2)+1 ⇒ (π/2)<θ≤(π/2)+1       or 90°<θ≤147.30°    we can easily calculate the area of a segment  with θ=((2π)/3) (=120°)  ((28)/(2π))(((2π)/3)−((√3)/2))=((28)/3)−((7(√3))/π)≈5.47  ⇒ θ>((2π)/3)  ⇒ ((2π)/3)<θ≤(π/2)+1 or 120°<θ≤147.30°  of the given options (e) is the right one

(1)7=282π(θsinθ)(2)generally0θ<2πand1sinθ1(3)theareaA=7isaquarteroftheareaofthecirclewhichisR2π=28(1)sinθ=θπ2(2)1θπ21π21θπ2+1but0θ0θπ2+1(3)π2<θ<πbutθπ2+1π2<θπ2+1or90°<θ147.30°wecaneasilycalculatetheareaofasegmentwithθ=2π3(=120°)282π(2π332)=28373π5.47θ>2π32π3<θπ2+1or120°<θ147.30°ofthegivenoptions(e)istherightone

Commented by indalecioneves last updated on 12/Nov/19

Thank you, Sir.  God bless you!

Thankyou,Sir.Godblessyou!

Terms of Service

Privacy Policy

Contact: info@tinkutara.com