Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 72889 by mathmax by abdo last updated on 04/Nov/19

calculate Σ_(n=1) ^∞   (((−1)^n )/((2n+1)n^2 ))

calculaten=1(1)n(2n+1)n2

Commented by mathmax by abdo last updated on 04/Nov/19

let S=Σ_(n=1) ^∞  (((−1)^n )/(n^2 (2n+1)))  first let decompose F(x)=(1/(x^2 (2x+1)))  F(x)=(a/x)+(b/x^2 ) +(c/(2x+1))  b =lim_(x→0) x^2 F(x)=1  c=lim_(x→−(1/2))   (2x+1)F(x)=4 ⇒F(x)=(a/x)+(1/x^2 )+(4/(2x+1))  lim_(x→+∞) xF(x)=0=a+(c/2) ⇒a=−2 ⇒F(x)=−(2/x)+(1/x^2 )+(4/(2x+1)) ⇒  S =Σ_(n=1) ^∞ (−1)^n F(n) =−2Σ_(n=1) ^∞  (((−1)^n )/n) +Σ_(n=1) ^∞  (((−1)^n )/n^2 ) +4Σ_(n=1) ^∞ (((−1)^n )/(2n+1))  Σ_(n=1) ^∞  (((−1)^n )/n) =−ln(2)  Σ_(n=1) ^∞  (((−1)^n )/n^2 ) =(2^(1−2) −1)ξ(2) =−(π^2 /(12))  Σ_(n=1) ^∞  (((−1)^n )/(2n+1)) =Σ_(n=0) ^∞  (((−1)^n )/(2n+1))−1 =(π/4)−1 ⇒  S =−2(−ln2)−(π^2 /(12)) +4((π/4)−1) =2ln(2)−(π^2 /(12)) +π −4

letS=n=1(1)nn2(2n+1)firstletdecomposeF(x)=1x2(2x+1)F(x)=ax+bx2+c2x+1b=limx0x2F(x)=1c=limx12(2x+1)F(x)=4F(x)=ax+1x2+42x+1limx+xF(x)=0=a+c2a=2F(x)=2x+1x2+42x+1S=n=1(1)nF(n)=2n=1(1)nn+n=1(1)nn2+4n=1(1)n2n+1n=1(1)nn=ln(2)n=1(1)nn2=(2121)ξ(2)=π212n=1(1)n2n+1=n=0(1)n2n+11=π41S=2(ln2)π212+4(π41)=2ln(2)π212+π4

Answered by mind is power last updated on 04/Nov/19

(1/((2n+1)n^2 ))=(1/n^2 )+(c/n)+(4/(2n+1))⇒(1/n^2 )+((−2)/n^ )+(4/(2n+1))  Σ_(n≥1) (((−1)^n )/n^2 )+Σ_(n≥1) (((−1)^(n+1) )/n)+4Σ(((−1)^n )/(2n+1))  (1/(1+x^2 ))=Σ_(n≥0) (−x^2 )^n   arctan(x)=Σ(−1)^n .(x^(2n+1) /(2n+1))  x=1⇒Σ(((−1)^n )/(2n+1))=(π/4)−1  Σ_(n≥1) (((−1)^(n+1) )/n)→ln(2)  Σ_(n≥1) (((−1)^n )/n^2 )=(1/4).ζ(2)−(3/4)ζ(2)=−((ζ(2))/2)=−(π^2 /(12))  ⇒Σ_(n≥1) (((−1)^n )/((2n+1)n^2 ))=−(π^2 /(12))+2ln(2)+π−4

1(2n+1)n2=1n2+cn+42n+11n2+2n+42n+1n1(1)nn2+n1(1)n+1n+4Σ(1)n2n+111+x2=n0(x2)narctan(x)=Σ(1)n.x2n+12n+1x=1Σ(1)n2n+1=π41n1(1)n+1nln(2)n1(1)nn2=14.ζ(2)34ζ(2)=ζ(2)2=π212n1(1)n(2n+1)n2=π212+2ln(2)+π4

Commented by turbo msup by abdo last updated on 04/Nov/19

thsnk you sir.

thsnkyousir.

Commented by mind is power last updated on 04/Nov/19

y,re welcom

y,rewelcom

Terms of Service

Privacy Policy

Contact: info@tinkutara.com