Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 72894 by TawaTawa last updated on 04/Nov/19

Answered by mind is power last updated on 04/Nov/19

lets assum n,m are relativ prime    let N=p_1 ^(k1) .p_2 ^(k2) ....p_n ^(kn)   σ(N)=Σ_(l_1 =0) ^k_1  Σ_(l2=0) ^(k2) ....Σ_(ln=0) ^(kn) p_1 ^(l1) p_2 ^(l2) ...p_n ^(ln) =Π_(i=1) ^n (Σ_(li=0) ^(ki) p_i ^(li) )  σ(N)=Π_(i=1) ^n ((p_i ^(ki+1) −1)/(p_i −1))  N_3 ,σ(N_3 )≥3.N_3   ⇒Π_(i=1) ^n ((p_i ^(ki+1) −1)/(pi−1))≥3.p_1 ^(k1) ....p_n ^(kn)   ⇔(1+p_i ....+p_i ^(k1) )........(1+p_n +....+p_n ^(kn) )≥3p_1 ^(k1) ...p_n ^(kn)   σ(3^2 5^2 2^2 =900)=((26)/2).((124)/4).(7/1)=13.31.7=2821≥2700  N_3 =900   σ(2^3 3^4 5^3 )=400140≥4.2^3 3^4 5^3   N_4 =81000

letsassumn,marerelativprimeletN=p1k1.p2k2....pnknσ(N)=k1l1=0k2l2=0....knln=0pl11pl22...plnn=ni=1(kili=0pili)σ(N)=ni=1piki+11pi1N3,σ(N3)3.N3ni=1piki+11pi13.p1k1....pnkn(1+pi....+pik1)........(1+pn+....+pnkn)3p1k1...pnknσ(325222=900)=262.1244.71=13.31.7=28212700N3=900σ(233453)=4001404.233453N4=81000

Commented by TawaTawa last updated on 04/Nov/19

God bless you sir

Godblessyousir

Commented by mind is power last updated on 04/Nov/19

y′re welcom

yrewelcom

Terms of Service

Privacy Policy

Contact: info@tinkutara.com