Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 72908 by mathmax by abdo last updated on 04/Nov/19

find ∫_0 ^π   (dθ/(x^2 −2x cosθ +1))  with x real.

find0πdθx22xcosθ+1withxreal.

Commented by mind is power last updated on 05/Nov/19

this is True for ∣x∣<1

thisisTrueforx∣<1

Commented by Tanmay chaudhury last updated on 05/Nov/19

Commented by Tanmay chaudhury last updated on 05/Nov/19

(1/(1−x^2 ))∫_0 ^π ((1−x^2 )/(x^2 −2xcosθ+1))dθ   [when x<1  ]  (1/(1−x^2 ))∫_0 ^π (1+2xcosθ+2x^2 cos2θ+2x^3 cos3θ+...)dθ  (1/(1−x^2 ))[∣θ∣_0 ^π +others terms=0  =(π/(1−x^2 )) answer    case−II  when x>1  let k=(1/x)   when x>1   so  k<1  ∫_0 ^π (dθ/(x^2 −2xcosθ+1))dθ  ∫_0 ^π (dθ/((1/k^2 )−(2/k)cosθ+1))dθ  ∫_0 ^π ((k^2 dθ)/(1−2kcosθ+k^2 ))dθ   [note k<1]  k^2 ×(π/(1−k^2 ))  =(π/((1/k^2 )−1))=so answer is   =(π/(x^2 −1))

11x20π1x2x22xcosθ+1dθ[whenx<1]11x20π(1+2xcosθ+2x2cos2θ+2x3cos3θ+...)dθ11x2[θ0π+othersterms=0=π1x2answercaseIIwhenx>1letk=1xwhenx>1sok<10πdθx22xcosθ+1dθ0πdθ1k22kcosθ+1dθ0πk2dθ12kcosθ+k2dθ[notek<1]k2×π1k2=π1k21=soansweris=πx21

Commented by mathmax by abdo last updated on 05/Nov/19

let f(x)=∫_0 ^π    (dθ/(x^2 −2xcosθ +1))  changement tan((θ/2))=tgive  f(x)=∫_0 ^∞     ((2dt)/((1+t^2 )(x^2 −2x((1−t^2 )/(1+t^2 )) +1))) =∫_0 ^∞   ((2dt)/(x^2 (1+t^2 )−2x(1−t^2 )+1+t^2 ))  =∫_0 ^∞   ((2dt)/(x^2  +x^2 t^2 −2x+2xt^2  +1+t^2 )) =∫_0 ^∞   ((2dt)/((x^2 +2x+1)t^2 +x^2 −2x+1))  =∫_0 ^∞   ((2dt)/((x+1)^2 t^2 +(x−1)^2 )) =(1/((x+1)^2 ))∫_0 ^∞   ((2dt)/(t^2  +(((x−1)/(x+1)))^2 ))(  if x≠−1 and   x≠1) ⇒f(x)=_(t=∣((x−1)/(x+1))∣u)   (1/((x+1)^2 ))∫_0 ^∞    (2/((((x−1)/(x+1)))^2 {1+u^2 }))∣((x−1)/(x+1))∣du  =(1/((x−1)^2 ))×((∣x−1∣)/(∣x+1∣))∫_0 ^∞  ((2du)/(1+u^2 )) =(1/(∣x^2 −1∣))(2×(π/2))=(π/(∣x^2 −1∣)) ⇒  f(x)=(π/(∣x^2 −1∣))

letf(x)=0πdθx22xcosθ+1changementtan(θ2)=tgivef(x)=02dt(1+t2)(x22x1t21+t2+1)=02dtx2(1+t2)2x(1t2)+1+t2=02dtx2+x2t22x+2xt2+1+t2=02dt(x2+2x+1)t2+x22x+1=02dt(x+1)2t2+(x1)2=1(x+1)202dtt2+(x1x+1)2(ifx1andx1)f(x)=t=∣x1x+1u1(x+1)202(x1x+1)2{1+u2}x1x+1du=1(x1)2×x1x+102du1+u2=1x21(2×π2)=πx21f(x)=πx21

Commented by Tanmay chaudhury last updated on 05/Nov/19

whom you target by this remarks...reply now

whomyoutargetbythisremarks...replynow

Commented by ajfour last updated on 05/Nov/19

Great method, Tanmay Sir..

Greatmethod,TanmaySir..

Commented by Tanmay chaudhury last updated on 05/Nov/19

Thank you sir...

Thankyousir...

Commented by ajfour last updated on 05/Nov/19

sorry sir, i concluded this on a  fleeting glance, forgive me..

sorrysir,iconcludedthisonafleetingglance,forgiveme..

Commented by Tanmay chaudhury last updated on 05/Nov/19

Commented by Tanmay chaudhury last updated on 05/Nov/19

taken from SL loney

takenfromSLloney

Commented by Tanmay chaudhury last updated on 05/Nov/19

taken from ML khanna

takenfromMLkhanna

Commented by Tanmay chaudhury last updated on 05/Nov/19

Commented by Tanmay chaudhury last updated on 05/Nov/19

sir pls check i have considerd  both case  x<1    and  x>1  pls

sirplscheckihaveconsiderdbothcasex<1andx>1pls

Commented by mind is power last updated on 05/Nov/19

nice solution

nicesolution

Commented by mind is power last updated on 05/Nov/19

nice sir

nicesir

Answered by mind is power last updated on 05/Nov/19

x^2 −2xcos(θ)+1    =(x−e^(iθ) )(x−e^(−iθ) )  ∫_0 ^π (dθ/((x−e^(iθ) )(x−e^(−iθ) )))=∫_0 (dθ/((x−e^(iθ) )(xe^(iθ) −1)))  f(x)=∫_0 ^π (dθ/(x^2 −2xcos(θ)+1))=f(−x)  juste find f in x∈R_+   z=e^(iθ) ⇒e^(iθ) =−idz  ⇒∫_1 ^(−1) ((−idz)/((x−z)(xz−1)))=i∫_1 ^(−1) (dz/((z−x)(xz−1)))  =i∫_1 ^(−1) (1/((x^2 −1)(z−x)))dz+((xdz)/((1−x^2 )(xz−1)))  =(i/(x^2 −1)){∫_1 ^(−1) (dz/(z−x))+∫_(−1) ^1 ((xdz)/(xz−1))}  =(i/(x^2 −1))(ln(−1−x)−ln(1−x)+ln(x−1)−ln(−x−1)  =(i/(x^2 −1))(ln(x−1)−ln(1−x))  ln(z_1 .z_2 )=ln(z_1 )+ln(z_2 )+2inπ  if x>1⇒ln(1−x)=ln(−1(x−1)=iπ+ln(x−1)  if x<1 ln(x−1)=iπ+ln(1−x)  ⇒  ln(x−1)−ln(1−x)=−iπ   x>1  ∫_0 ^π (dθ/(x^2 −2xcos(θ)+1))= { (((π/(x^2 −1))    x>1)),((((−π)/(x^2 −1)) 0≤ x<1)) :}

x22xcos(θ)+1=(xeiθ)(xeiθ)0πdθ(xeiθ)(xeiθ)=0dθ(xeiθ)(xeiθ1)f(x)=0πdθx22xcos(θ)+1=f(x)justefindfinxR+z=eiθeiθ=idz11idz(xz)(xz1)=i11dz(zx)(xz1)=i111(x21)(zx)dz+xdz(1x2)(xz1)=ix21{11dzzx+11xdzxz1}=ix21(ln(1x)ln(1x)+ln(x1)ln(x1)=ix21(ln(x1)ln(1x))ln(z1.z2)=ln(z1)+ln(z2)+2inπifx>1ln(1x)=ln(1(x1)=iπ+ln(x1)ifx<1ln(x1)=iπ+ln(1x)ln(x1)ln(1x)=iπx>10πdθx22xcos(θ)+1={πx21x>1πx210x<1

Answered by ajfour last updated on 05/Nov/19

I=∫_0 ^( π) (dθ/((x−1)^2 +4xsin^2 (θ/2)))  dividing by cos^2 (θ/2)    and    let tan (θ/2)=t  ⇒ (1/2)sec^2 (θ/2)dθ=dt  ⇒  (sec^2 (θ/2))dθ=2dt  I=∫^  ((2dt)/((x−1)^2 (1+t^2 )+4xt^2 ))    =(1/((x+1)^2 ))∫((2dt)/(t^2 +(((x−1)/(x+1)))^2 ))=(2/(x^2 −1))tan^(−1) [((t(x+1))/(x−1))]+c   =(2/(x^2 −1))((π/2)) = (π/(x^2 −1)) .   I = (π/(x^2 −1)) ∙

I=0πdθ(x1)2+4xsin2θ2dividingbycos2θ2andlettanθ2=t12sec2θ2dθ=dt(sec2θ2)dθ=2dtI=2dt(x1)2(1+t2)+4xt2=1(x+1)22dtt2+(x1x+1)2=2x21tan1[t(x+1)x1]+c=2x21(π2)=πx21.I=πx21

Commented by mind is power last updated on 05/Nov/19

sir if ((x+1)/(x−1))<0  lim t→∞ tan^− ((((x+1}t)/(x−1)))=−(π/2)

sirifx+1x1<0limttan((x+1}tx1)=π2

Commented by ajfour last updated on 05/Nov/19

true, thanks for the light.

true,thanksforthelight.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com