Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 7294 by Tawakalitu. last updated on 21/Aug/16

If a polynomial p(x) satisfies the identity    x^(2015)  + x^(2014)  + x^(2013)  + 1 = (x^3  + x^2  + x + 1)p(x)    Find  p(−1)

$${If}\:{a}\:{polynomial}\:{p}\left({x}\right)\:{satisfies}\:{the}\:{identity} \\ $$$$ \\ $$$${x}^{\mathrm{2015}} \:+\:{x}^{\mathrm{2014}} \:+\:{x}^{\mathrm{2013}} \:+\:\mathrm{1}\:=\:\left({x}^{\mathrm{3}} \:+\:{x}^{\mathrm{2}} \:+\:{x}\:+\:\mathrm{1}\right){p}\left({x}\right) \\ $$$$ \\ $$$${Find}\:\:{p}\left(−\mathrm{1}\right) \\ $$

Commented by prakash jain last updated on 21/Aug/16

p(x)=((x^(2015) +x^(2014) +x^(2013) +1)/(x^3 +x^2 +x+1))  =(((x^(2015) +x^(2014) +x^(2013) +x^(2012) +1−x^(2012) ))/(x^3 +x^2 +x+1))  =x^(2012) −((x^(2012) −1)/(x^3 +x^2 +x+1))  =x^(2012) −(((x−1)(x^(2012) −1))/(x^4 −1))  =x^(2012) −(x−1)(([(x^4 )^(503) −1])/(x^4 −1))  =x^(2012) −(x−1)Σ_(i=0) ^(502) (x^4 )^i   p(−1)=(−1)^(2012) −(−1−1)Σ_(i=0) ^(502) (1)^i   =1+2(503)=1+1006=1007

$${p}\left({x}\right)=\frac{{x}^{\mathrm{2015}} +{x}^{\mathrm{2014}} +{x}^{\mathrm{2013}} +\mathrm{1}}{{x}^{\mathrm{3}} +{x}^{\mathrm{2}} +{x}+\mathrm{1}} \\ $$$$=\frac{\left({x}^{\mathrm{2015}} +{x}^{\mathrm{2014}} +{x}^{\mathrm{2013}} +{x}^{\mathrm{2012}} +\mathrm{1}−{x}^{\mathrm{2012}} \right)}{{x}^{\mathrm{3}} +{x}^{\mathrm{2}} +{x}+\mathrm{1}} \\ $$$$={x}^{\mathrm{2012}} −\frac{{x}^{\mathrm{2012}} −\mathrm{1}}{{x}^{\mathrm{3}} +{x}^{\mathrm{2}} +{x}+\mathrm{1}} \\ $$$$={x}^{\mathrm{2012}} −\frac{\left({x}−\mathrm{1}\right)\left({x}^{\mathrm{2012}} −\mathrm{1}\right)}{{x}^{\mathrm{4}} −\mathrm{1}} \\ $$$$={x}^{\mathrm{2012}} −\left({x}−\mathrm{1}\right)\frac{\left[\left({x}^{\mathrm{4}} \right)^{\mathrm{503}} −\mathrm{1}\right]}{{x}^{\mathrm{4}} −\mathrm{1}} \\ $$$$={x}^{\mathrm{2012}} −\left({x}−\mathrm{1}\right)\underset{{i}=\mathrm{0}} {\overset{\mathrm{502}} {\sum}}\left({x}^{\mathrm{4}} \right)^{{i}} \\ $$$${p}\left(−\mathrm{1}\right)=\left(−\mathrm{1}\right)^{\mathrm{2012}} −\left(−\mathrm{1}−\mathrm{1}\right)\underset{{i}=\mathrm{0}} {\overset{\mathrm{502}} {\sum}}\left(\mathrm{1}\right)^{{i}} \\ $$$$=\mathrm{1}+\mathrm{2}\left(\mathrm{503}\right)=\mathrm{1}+\mathrm{1006}=\mathrm{1007} \\ $$

Commented by Tawakalitu. last updated on 22/Aug/16

Thanks so much sir. i really appreciate.

$${Thanks}\:{so}\:{much}\:{sir}.\:{i}\:{really}\:{appreciate}. \\ $$

Commented by peter james last updated on 22/Aug/16

Nice working...

$${Nice}\:{working}... \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com