Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 72952 by ajfour last updated on 05/Nov/19

Commented by ajfour last updated on 05/Nov/19

AB divides the composite figure  of square mounted by a semicircle  in two equal parts. Determine α.

$${AB}\:{divides}\:{the}\:{composite}\:{figure} \\ $$$${of}\:{square}\:{mounted}\:{by}\:{a}\:{semicircle} \\ $$$${in}\:{two}\:{equal}\:{parts}.\:{Determine}\:\alpha. \\ $$

Commented by mind is power last updated on 05/Nov/19

let O center of semi circl,β angl between OB  (π/2)R^2 +4R^2 =(R^2 /2).(β/)−(1/2)(R.sin(β).(Rcos(β)−((Rsin(β))/(tg(α)))))+{(R−(Rcosβ−((Rsin(β))/(tg(α)))))+2R}.R  ⇔(π/2)+4=(β/2) −(1/2)(sin(β)cos(β)−((sin^2 (β))/(tg(α))))+(3−cos(β)+((sin(β))/(tg(α))))  ⇒x=(π/2)+4  ⇒x−(β/2)=((1/(tg(α))))(((sin^2 (β))/2)+sin(β))−((sin(β)cos(β))/2)+3−cos(β)  (1/(tg(α)))=((x−(β/2)+((sin(β)cos(β))/2)+cos(β)−3)/(((sin^2 (β))/2)+sin(β)))  ((2R)/(tg(α)))−R=R+Rcos(β)−((Rsin(β))/(tg(α)))  (1/(tg(α)))(2+sin(β))=((2+cos(β))/)  (1/(tg(α)))=((2+cos(β))/(2+sin(β)))=((x−(β/2)+((sin(β)cos(β))/2)+cos(β)−3)/(((sin^2 (β))/2)+sin(β)))  ⇒sin^2 (β)+2sin(β)=−3sin(β)−6+2x−(β/2)(2+sin(β))+sin(β)cos(β))  let β_0  of this equation  ⇒α=cot^(−1) (((x−(β_0 /2)+((sin(β_0 )cos(β_0 ))/2)+cos(β_0 )−3)/(((sin^2 (β_0 ))/2)+sin(β_0 ))))

$$\mathrm{let}\:\mathrm{O}\:\mathrm{center}\:\mathrm{of}\:\mathrm{semi}\:\mathrm{circl},\beta\:\mathrm{angl}\:\mathrm{between}\:\mathrm{OB} \\ $$$$\frac{\pi}{\mathrm{2}}\mathrm{R}^{\mathrm{2}} +\mathrm{4R}^{\mathrm{2}} =\frac{\mathrm{R}^{\mathrm{2}} }{\mathrm{2}}.\frac{\beta}{}−\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{R}.\mathrm{sin}\left(\beta\right).\left(\mathrm{Rcos}\left(\beta\right)−\frac{\mathrm{Rsin}\left(\beta\right)}{\mathrm{tg}\left(\alpha\right)}\right)\right)+\left\{\left(\mathrm{R}−\left(\mathrm{Rcos}\beta−\frac{\mathrm{Rsin}\left(\beta\right)}{\mathrm{tg}\left(\alpha\right)}\right)\right)+\mathrm{2R}\right\}.\mathrm{R} \\ $$$$\Leftrightarrow\frac{\pi}{\mathrm{2}}+\mathrm{4}=\frac{\beta}{\mathrm{2}}\:−\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{sin}\left(\beta\right)\mathrm{cos}\left(\beta\right)−\frac{\mathrm{sin}^{\mathrm{2}} \left(\beta\right)}{\mathrm{tg}\left(\alpha\right)}\right)+\left(\mathrm{3}−\mathrm{cos}\left(\beta\right)+\frac{\mathrm{sin}\left(\beta\right)}{\mathrm{tg}\left(\alpha\right)}\right) \\ $$$$\Rightarrow\mathrm{x}=\frac{\pi}{\mathrm{2}}+\mathrm{4} \\ $$$$\Rightarrow\mathrm{x}−\frac{\beta}{\mathrm{2}}=\left(\frac{\mathrm{1}}{\mathrm{tg}\left(\alpha\right)}\right)\left(\frac{\mathrm{sin}^{\mathrm{2}} \left(\beta\right)}{\mathrm{2}}+\mathrm{sin}\left(\beta\right)\right)−\frac{\mathrm{sin}\left(\beta\right)\mathrm{cos}\left(\beta\right)}{\mathrm{2}}+\mathrm{3}−\mathrm{cos}\left(\beta\right) \\ $$$$\frac{\mathrm{1}}{\mathrm{tg}\left(\alpha\right)}=\frac{\mathrm{x}−\frac{\beta}{\mathrm{2}}+\frac{\mathrm{sin}\left(\beta\right)\mathrm{cos}\left(\beta\right)}{\mathrm{2}}+\mathrm{cos}\left(\beta\right)−\mathrm{3}}{\frac{\mathrm{sin}^{\mathrm{2}} \left(\beta\right)}{\mathrm{2}}+\mathrm{sin}\left(\beta\right)} \\ $$$$\frac{\mathrm{2R}}{\mathrm{tg}\left(\alpha\right)}−\mathrm{R}=\mathrm{R}+\mathrm{Rcos}\left(\beta\right)−\frac{\mathrm{Rsin}\left(\beta\right)}{\mathrm{tg}\left(\alpha\right)} \\ $$$$\frac{\mathrm{1}}{\mathrm{tg}\left(\alpha\right)}\left(\mathrm{2}+\mathrm{sin}\left(\beta\right)\right)=\frac{\mathrm{2}+\mathrm{cos}\left(\beta\right)}{} \\ $$$$\frac{\mathrm{1}}{\mathrm{tg}\left(\alpha\right)}=\frac{\mathrm{2}+\mathrm{cos}\left(\beta\right)}{\mathrm{2}+\mathrm{sin}\left(\beta\right)}=\frac{\mathrm{x}−\frac{\beta}{\mathrm{2}}+\frac{\mathrm{sin}\left(\beta\right)\mathrm{cos}\left(\beta\right)}{\mathrm{2}}+\mathrm{cos}\left(\beta\right)−\mathrm{3}}{\frac{\mathrm{sin}^{\mathrm{2}} \left(\beta\right)}{\mathrm{2}}+\mathrm{sin}\left(\beta\right)} \\ $$$$\left.\Rightarrow\mathrm{sin}^{\mathrm{2}} \left(\beta\right)+\mathrm{2sin}\left(\beta\right)=−\mathrm{3sin}\left(\beta\right)−\mathrm{6}+\mathrm{2x}−\frac{\beta}{\mathrm{2}}\left(\mathrm{2}+\mathrm{sin}\left(\beta\right)\right)+\mathrm{sin}\left(\beta\right)\mathrm{cos}\left(\beta\right)\right) \\ $$$$\mathrm{let}\:\beta_{\mathrm{0}} \:\mathrm{of}\:\mathrm{this}\:\mathrm{equation} \\ $$$$\Rightarrow\alpha=\mathrm{cot}^{−\mathrm{1}} \left(\frac{\mathrm{x}−\frac{\beta_{\mathrm{0}} }{\mathrm{2}}+\frac{\mathrm{sin}\left(\beta_{\mathrm{0}} \right)\mathrm{cos}\left(\beta_{\mathrm{0}} \right)}{\mathrm{2}}+\mathrm{cos}\left(\beta_{\mathrm{0}} \right)−\mathrm{3}}{\frac{\mathrm{sin}^{\mathrm{2}} \left(\beta_{\mathrm{0}} \right)}{\mathrm{2}}+\mathrm{sin}\left(\beta_{\mathrm{0}} \right)}\right)\:\: \\ $$

Commented by MJS last updated on 05/Nov/19

I found no exact solution  α≈54.8872°

$$\mathrm{I}\:\mathrm{found}\:\mathrm{no}\:\mathrm{exact}\:\mathrm{solution} \\ $$$$\alpha\approx\mathrm{54}.\mathrm{8872}° \\ $$

Commented by ajfour last updated on 05/Nov/19

Thanks Powerful Mind, and MjS  Sir.

$${Thanks}\:{Powerful}\:{Mind},\:{and}\:{MjS} \\ $$$${Sir}. \\ $$

Answered by ajfour last updated on 05/Nov/19

Commented by ajfour last updated on 05/Nov/19

Area(sector BCF)=(β/2)  tan α=((2+sin β)/(1+cos β))  ⇒  cot α=((1+cos β)/(2+sin β))  (1/2)(total area)=Area(right half                              of composite area)  (π/4)+1=cot α+2(2−2cot α)+(β/2)                   −(1/2)×2(cot α−1)sin β  say  cot α=t  (π/4)+1=t+4−4t+(β/2)−(t−1)sin β  ⇒   (π/4)+1=4+(β/2)+sin β−(3+sin β)t  ⇒  (3+sin β)(((1+cos β)/(2+sin β)))−(β/2)−sin β          =3−(π/4)  this eq. yields β  and then      α=tan^(−1) (((2+sin β)/(1+cos β))) .

$${Area}\left({sector}\:{BCF}\right)=\frac{\beta}{\mathrm{2}} \\ $$$$\mathrm{tan}\:\alpha=\frac{\mathrm{2}+\mathrm{sin}\:\beta}{\mathrm{1}+\mathrm{cos}\:\beta}\:\:\Rightarrow\:\:\mathrm{cot}\:\alpha=\frac{\mathrm{1}+\mathrm{cos}\:\beta}{\mathrm{2}+\mathrm{sin}\:\beta} \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}\left({total}\:{area}\right)={Area}\left({right}\:{half}\right. \\ $$$$\left.\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{of}\:{composite}\:{area}\right) \\ $$$$\frac{\pi}{\mathrm{4}}+\mathrm{1}=\mathrm{cot}\:\alpha+\mathrm{2}\left(\mathrm{2}−\mathrm{2cot}\:\alpha\right)+\frac{\beta}{\mathrm{2}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:−\frac{\mathrm{1}}{\mathrm{2}}×\mathrm{2}\left(\mathrm{cot}\:\alpha−\mathrm{1}\right)\mathrm{sin}\:\beta \\ $$$${say}\:\:\mathrm{cot}\:\alpha={t} \\ $$$$\frac{\pi}{\mathrm{4}}+\mathrm{1}={t}+\mathrm{4}−\mathrm{4}{t}+\frac{\beta}{\mathrm{2}}−\left({t}−\mathrm{1}\right)\mathrm{sin}\:\beta \\ $$$$\Rightarrow \\ $$$$\:\frac{\pi}{\mathrm{4}}+\mathrm{1}=\mathrm{4}+\frac{\beta}{\mathrm{2}}+\mathrm{sin}\:\beta−\left(\mathrm{3}+\mathrm{sin}\:\beta\right){t} \\ $$$$\Rightarrow \\ $$$$\left(\mathrm{3}+\mathrm{sin}\:\beta\right)\left(\frac{\mathrm{1}+\mathrm{cos}\:\beta}{\mathrm{2}+\mathrm{sin}\:\beta}\right)−\frac{\beta}{\mathrm{2}}−\mathrm{sin}\:\beta \\ $$$$\:\:\:\:\:\:\:\:=\mathrm{3}−\frac{\pi}{\mathrm{4}} \\ $$$${this}\:{eq}.\:{yields}\:\beta\:\:{and}\:{then} \\ $$$$\:\:\:\:\alpha=\mathrm{tan}^{−\mathrm{1}} \left(\frac{\mathrm{2}+\mathrm{sin}\:\beta}{\mathrm{1}+\mathrm{cos}\:\beta}\right)\:. \\ $$

Answered by mr W last updated on 05/Nov/19

Commented by mr W last updated on 05/Nov/19

tan γ=2 ⇒sin γ=(2/(√5)) ⇒cos γ=(1/(√5))  AC=(√5)R  ΔACB=(((√5)R^2 sin (π−γ+β))/2)=(((√5)R^2 sin (γ−β))/2)  (((√5)R^2 sin (γ−β))/2)+R^2 +(((π−β)R^2 )/2)=(1/2)(4R^2 +((πR^2 )/2))  (√5)sin (γ−β)−β=2−(π/2)  2 cos β−sin β−β=2−(π/2)  ⇒β=0.6192  tan α=((2R+R sin β)/(R+R cos β))=((2+sin β)/(1+cos β))  ⇒α=54.888°

$$\mathrm{tan}\:\gamma=\mathrm{2}\:\Rightarrow\mathrm{sin}\:\gamma=\frac{\mathrm{2}}{\sqrt{\mathrm{5}}}\:\Rightarrow\mathrm{cos}\:\gamma=\frac{\mathrm{1}}{\sqrt{\mathrm{5}}} \\ $$$${AC}=\sqrt{\mathrm{5}}{R} \\ $$$$\Delta{ACB}=\frac{\sqrt{\mathrm{5}}{R}^{\mathrm{2}} \mathrm{sin}\:\left(\pi−\gamma+\beta\right)}{\mathrm{2}}=\frac{\sqrt{\mathrm{5}}{R}^{\mathrm{2}} \mathrm{sin}\:\left(\gamma−\beta\right)}{\mathrm{2}} \\ $$$$\frac{\sqrt{\mathrm{5}}{R}^{\mathrm{2}} \mathrm{sin}\:\left(\gamma−\beta\right)}{\mathrm{2}}+{R}^{\mathrm{2}} +\frac{\left(\pi−\beta\right){R}^{\mathrm{2}} }{\mathrm{2}}=\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{4}{R}^{\mathrm{2}} +\frac{\pi{R}^{\mathrm{2}} }{\mathrm{2}}\right) \\ $$$$\sqrt{\mathrm{5}}\mathrm{sin}\:\left(\gamma−\beta\right)−\beta=\mathrm{2}−\frac{\pi}{\mathrm{2}} \\ $$$$\mathrm{2}\:\mathrm{cos}\:\beta−\mathrm{sin}\:\beta−\beta=\mathrm{2}−\frac{\pi}{\mathrm{2}} \\ $$$$\Rightarrow\beta=\mathrm{0}.\mathrm{6192} \\ $$$$\mathrm{tan}\:\alpha=\frac{\mathrm{2}{R}+{R}\:\mathrm{sin}\:\beta}{{R}+{R}\:\mathrm{cos}\:\beta}=\frac{\mathrm{2}+\mathrm{sin}\:\beta}{\mathrm{1}+\mathrm{cos}\:\beta} \\ $$$$\Rightarrow\alpha=\mathrm{54}.\mathrm{888}° \\ $$

Commented by ajfour last updated on 05/Nov/19

Thanks mrW Sir, hope my answer  comes the same; haven′t checked  yet..

$${Thanks}\:{mrW}\:{Sir},\:{hope}\:{my}\:{answer} \\ $$$${comes}\:{the}\:{same};\:{haven}'{t}\:{checked} \\ $$$${yet}.. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com